
Tape’s Not Dead

12 FreeBSD Journal

S E E
T E X T
O N L Y

Where Does Tape Fit?
There are places where tape makes a lot of
sense, and places where it doesn’t. In the 1980s
and 1990s, QIC and DAT technologies were
aimed at home and smaller business users, and
worked well enough for end-user backups. There
is no equivalent small, end-user tape technology
today. If you’re a home user with a couple of
gigabytes or maybe even a couple of terabytes to
back up, tape isn’t generally what you should be
looking for.

Before we talk about where tape makes sense,
though, it would be helpful to review some recent
tape drives and cartridges, and their capabilities:

• The costs of the above drives and media vary
widely, especially when you consider that most
drives will be in a tape library, and the tape
libraries will usually have multiple drives. The
more data you have, the more tape makes sense.
At large scale, the cost of the media is generally
larger than the library and drives.
• Tape provides a number of advantages over
disk and flash for storage:

• The cost per GB of tape is very low, generally
lower than the cheapest disk-based backup.
• Tape makes a great archive storage media. If
you have data that isn’t used very often, you can
store it on tape and save your expensive disk or
flash arrays for frequently used data.
• The throughput is higher than most spinning
disk drives. (Although at any scale, you have to
consider the total number of tape or disk drives
and the interconnect characteristics to evaluate
the overall system throughput.)
• Tapes are designed to be moved around and
stored. Disks aren’t generally designed with that
in mind. (Although they can be used that way.)

This makes them great for off-site backup.
• Tapes generally have a 30-year shelf life. You
won’t find disk manufacturers making that claim.
• Tapes are good for air-gapped storage. Are you
worried that a software bug, a malicious person,
or ransomware will destroy your data? Back it up
on tape and put it in off-site storage. Those
threats can only destroy data that they can access.

Tapes provide a certain amount of genetic

B Y K E N M E R R Y

Drive Media Type Raw Capacity Compressed Raw Speed Comp. Speed
IBM TS1155 JD 15TB 37.5TB 360MiB/sec 750MiB/sec

IBM TS1150 JD 10TB 25TB 360MiB/sec 750MiB/sec

LTO-8 LTO-8 12TB 30TB 360MiB/sec 750MiB/sec

LTO-8 LTO-M8 9TB 22.5TB 300MiB/sec 700MiB/sec

LTO-7 LTO-7 6TB 15TB 300MiB/sec 700MiB/sec

Oracle T10000D T2 8.5TB 21.25 252MiB/sec 800MiB/sec

For many people evaluating storage alternatives and surveying
the landscape of NAS, SAN, Object, Cloud, disk and flash storage,

tape is perhaps an anachronism. Tape has been around since the
dawn of computing, but does it have a place now? I believe it does. I spent more
than 10 years of my career working for two start-ups that explicitly aimed to
replace tape with (mostly FreeBSD-based in those cases) disk. I now work for a com-
pany that sells a lot of tape products as well as (FreeBSD-based) products that con-
nect to disk and tape. So, I have seen both sides of the debate.

Jan/Feb 2018 13

diversity in storage. What would happen if you
had a disk or flash drive firmware bug that cor-
rupted data on all of your drives? What would
happen if you had a filesystem bug that corrupted
all of your data? With tape, you have different
firmware, different media, and different software
storing the data. As long as you take the time to
back up, you can recover from a drive firmware
bug or a filesystem or OS bug.

Tape is not a good fit for data that needs to be
accessed very quickly (e.g., less than 10 seconds)
or randomly. For those types of data, disk and
flash are a better choice.

Tape in FreeBSD
FreeBSD has had tape support since it was the
386BSD patchkit. The original FreeBSD SCSI layer
was written by Julian Elischer, who also wrote the
st(4) tape driver. Justin Gibbs and I wrote
FreeBSD’s CAM (Common Access Method) SCSI
layer, which went into the FreeBSD tree in 1998
and included the sa(4) (Sequential Access) tape
driver. (Justin wrote most of the sa(4) driver.) Matt
Jacob rewrote the sa(4) driver substantially start-
ing in late 1998, and much of what it is now is
due to his work. Matt was the maintainer of the
driver for many years. I am the de-facto maintain-
er now.

The sa(4) driver supports tape drives that range
from old SCSI-1 9-track tape drives to the latest
Fibre Channel attached IBM TS1155 tape drives. It
includes modern density support, using the mt(1)
getdensity subcommand. You can use that com-
mand to ask a modern tape drive what kinds of
cartridges it supports and in which formats. That
is very helpful for IBM TS (and now LTO) tape
drives, where one cartridge can have multiple
available formats with different capacities.

The sa(4) driver also supports unmapped I/O.
Unmapped I/O buffers are userland buffers that
are not mapped into the kernel’s virtual address
space. Instead, they are translated directly to
physical pages, which are then transmitted to the
FC/SAS/SCSI controllers firmware for DMA.
Mapping user buffers into kernel virtual address
space produces slowdowns on modern machines
with lots of cores due to the TLB (Translation
Lookaside Buffer) shootdowns necessary to
update the cache in each core. Unmapped I/O
allows data that the kernel doesn’t need to touch
to pass through the kernel without being
mapped, avoiding the TLB shootdown. With lots
of I/O activity, avoiding TLB shootdowns can boost
performance noticeably.

Handling Tape Libraries
FreeBSD has had built-in support for tape libraries
via the ch(4) driver and chio(1) utility since the
transition from the original SCSI layer to CAM in
1998. I ported the ch(4) driver and chio(1), which
were written by Jason Thorpe, from NetBSD to
FreeBSD/CAM. The ch(4) driver supports every-
thing from very old libraries to the latest tape
libraries.

The mtx(1) utility (in ports/misc) can also con-
trol a tape library and operates via SCSI
passthrough.

While chio(1) and mtx(1) are good for com-
mand line control of a library, a backup applica-
tion with tape library-level support (like Bacula or
Amanda) will use chio(1) or mtx(1) to move tapes
between slots and tape drives in a tape library.

Data Integrity
A backup isn’t much good if the data gets cor-
rupted; data integrity is very important. You want
to be sure that your backups work and that all
the bits make it to tape in the right order.

The tape API presents unique challenges for
storage protocols like SCSI. When the OS is talk-
ing to a hard drive via SCSI, hardware, software,
or firmware failures can sometimes cause com-
mands or data to get dropped. If that happens,
the driver times out the outstanding command,
aborts it, and sends status up to the CAM mid-
layer so that the command can be retried if the
user requested retries. In the case of a timeout on
a write, the command and data may or may not
have reached the drive originally, but resending
the command does no harm. The hard drive will
simply rewrite the data again and move on.

Tape is a sequential medium, though. Writes
are sent to tape without an explicit logical block
address. The address is implicit. Each write (or
read) advances the block number down the tape.
If a write sent to a tape drive times out, the OS
has a dilemma: what made it down to the drive?
Did the entire block make it down, and we simply
didn’t get status back? Did the drive get part of
the data? Did the drive get none of the data?
Retrying without knowing what made it to the
drive could lead to data corruption. The alterna-
tive would seem to be aborting the entire backup
job with an error.

The ANSI T10 (t10.org) and T11 (t11.org) com-
mittees, who write the SCSI and Fibre Channel
specifications, respectively, came up with a solu-
tion to the problem. It was originally called FC-

Tape, and is now included in the FCP-4 (Fibre
Channel Protocol) specification from T10. Sections
4.4 through 4.7 of the spec outline Fibre Channel
features needed to assure data integrity for tape
drives. They are:

Precise Delivery of
Commands
This feature provides a way for an initiator (server)
to specify a CRN (Command Reference Number)
with each command. The CRN is a number from 1
through 255 that wraps around. If the target (tape
drive in this case) receives a command that is not
in sequence with the previous command and CRNs
are enabled, it will reject the command. This
insures that tape I/O requests are executed in
order.

Confirmed Completion of
FCP I/O Operations
Confirmed completion is a Fibre Channel option
that lets the Target (in this case, a tape drive)
request that the Initiator (the server) tell the target
that it has received a status response. This lets the
target know that it does not need to retransmit
status to the initiator.

A normal SCSI write command sequence goes
like this:

At this point, the Initiator knows that the Target
has completed the write. The Target knows that it
has completed the write, but does not know
whether the Initiator received the message.
Confirmed completion adds another message:

Retransmission of
Unsuccessfully Transmitted
IUs (Information Units)
If a read or a write command to a Fibre Channel
device is taking too long, this feature gives the
Fibre Channel driver and/or firmware a mechanism
to do link level error recovery without the big
hammer of timeouts, aborts, and retries (or rather
failures in the case of tape).

If a target (tape drive) takes more than 3 or 4
seconds to respond to a command or a data trans-
mission, the initiator (server) can send REC (Read
Exchange Concise) ELS (Extended Link Services)
Fibre Channel command to the target to find out
the status of the command.

If the target never got the command, the initia-
tor now knows that (as opposed to not knowing
what got dropped) and can retransmit it. If the tar-
get only got half the data, the initiator now knows
that, and can retransmit the data using the SRR
(Sequence Retransmission Request) ELS command
if the target supports SRR.

This allows link level error recovery in a time
frame that is much smaller than typical tape time-
outs. The sa(4) driver uses a 32-minute timeout for
read and write commands. That is the recom-
mended timeout value from an IBM LTO-5. Other
drives are similar. To see the timeout values for
your tape drive, try this:

So if a problem happens on a link, without FC-
Tape, the FC driver will wait 32 minutes, abort the
I/O, and then send a failure notification back up
the stack to the sa(4) driver. There are no retries,
because you can’t safely retry tape I/O operations
for reasons we’ve outlined.

With FC-Tape, though, the FC driver or
firmware will send a REC to find out the status of
the command, and assuming the drive is still
responsive, the initiator and target can get the
transfer moving again in seconds as opposed to
minutes.

This capability can also help ensure reliable tape
access in a Fibre Channel environment with reliabili-
ty issues. An analogue from the network world is
using TCP (Transmission Control Protocol) on top of
IP (Internet Protocol) to ensure reliable transmissions
on a network that can sometimes drop packets.

Task Retry Identification
Task Retry Identification is a mechanism for identi-
fying a retry sequence. This is a necessary addition
because of the way commands are identified in
Fibre Channel.

In Fibre Channel, the initiator (server) gives an
OX_ID (Originator Exchange ID) to each SCSI (or
other) command it sends to the target (tape drive).
When the target responds to the initial command,
it replies with the same OX_ID and adds its own
RX_ID (Receiver Exchange ID). The OX_ID and

14 FreeBSD Journal

Initiator -> Target: I want to write 512KiB.
Target -> Initiator: Go ahead and Transfer the data.
Initiator -> Target: Transferring 512KiB of data.
Target -> Initiator: Data successfully accepted into cache.

Initiator -> Target: I got your completion message.

camcontrol opcodes sa0 –T

Jan/Feb 2018 15

RX_ID are how a particular command is identified
from then on. When data is transmitted to the tar-
get, the initiator specifies the OX_ID and RX_ID so
that the target knows which command the data
belongs to.

The OX_ID and RX_ID are 16 bite values can
quickly wrap around. For this reason, the Task Retry
Identifier is specified along with Fibre Channel
commands (FCP_CMND), REC, and SRR to tie the
error recovery actions together and make it clear
which command they’re referring to.

FreeBSD FC-Tape Support
FreeBSD has three Fibre Channel drivers, two of
which are in the tree and one that will be in the
tree soon.

The isp(4) driver was written by Matt Jacob and
covers Qlogic controllers from Parallel SCSI all the
way to 16Gb Fibre Channel. Matt added FC-Tape
support in 2012 thanks to a contract from Spectra
Logic Corporation.

The mpt(4) driver includes support for older LSI
FC controllers up to 4Gb, but does not support FC-
Tape.

The ocs_fc(4) driver, which was written by
Broadcom (formerly Emulex), should be committed to
FreeBSD soon. It supports Broadcom’s 16Gb and
32Gb Fibre Channel cards and does support FC-Tape.

SAS
Fibre Channel includes a number of link level error
recovery features for tape drives, but what about
SAS?

SAS includes a feature called TLR (Transport
Layer Retries) that is similar to the FC-Tape fea-
tures. It can retransmit commands and data as
needed. For more details about how this works,
get the SPL-4r12 (SAS Protocol Layer 4, revision 12)
specification from t10.org and look in section
8.2.1.

The mps(4) (LSI/Broadcom 6Gb SAS) and mpr(4)
(LSI/Broadcom 12Gb SAS) drivers in FreeBSD sup-
port TLR and turn it on for tape drives.

Bit Error Rate and
Checksums
Another topic that comes up when talking about
hard drives and tape drives is Bit Error Rate. The Bit
Error Rate is the likelihood of a tape or disk drive
returning a byte to the host that is incorrect. You
can also think of it as the likelihood of silent data
corruption.

If your data is corrupt on the disk or tape, you

want the drive to tell you about it, and not pass
back bad data.

Disk and tape drives use various algorithms to
reduce the likelihood of silent data corruption, and,
by default, the tape algorithms are better. But, you
can add checksums to both disk and tape storage
to significantly reduce the likelihood of silent data
corruption. (Using ZFS is an excellent way to reduce
the incidence of silent data corruption with disk.)

The Bit Error Rate topic alone could fill a fairly
lengthy article, so instead of doing that here, this
article covers disk and disk channel bit error rate
pretty well:

And this paper from the LTO consortium briefly
explains that tape drives have better error detection
and correction algorithms and so are much less
prone than disks to silent data corruption:

Modern tape drives also support Protection
Information, which is an extra CRC (CRC32 or
Reed-Solomon CRC) that can be written with each
tape block, and checked by the tape drive on read
and write. The FreeBSD sa(4) driver supports
Protection Information. The only application I know
of that supports adding the CRC to each block on
FreeBSD is IBM’s LTFS. (See below.) See the mt(1)
man page section on the ‘protect’ subcommand
and the sa(4) man page for more details on how it
works.

Users and applications are also free to write their
own checksums to tape and read them back. Even
if tape has a Bit Error Rate that is much better than
disk, that doesn’t help if the data gets corrupted
before it makes it to the tape, or after it is read off
of the tape. (Protection Information, above, can
help in that situation, especially if it is generated in
the application.)

Application Support
There are many applications that talk to tape, but
there are two major open-source backup applica-
tions that run on FreeBSD and talk to tape:
Amanda and Bacula. There are also other built-in
tools you can use to talk to tape. And finally, there
is LTFS.

http://www.enterprisestorageforum.com/
storage-technology/sas-vs.-sata-1.html

https://www.lto.org/wp-content/uploads/2014/
06/LTO16_0026_ValueProp_Reliability_01_2016_FINAL.pdf

16 FreeBSD Journal

Amanda
Amanda stands for Advanced Maryland Automatic
Network Disk Archiver. The Amanda home page is
at http://amanda.org. The Amanda server is in the
ports tree at misc/amanda-server.

Amanda offers a myriad of features. One of the
things I like about Amanda is that it works with
ZFS snapshots. When you do a full backup, it cre-
ates a new snapshot of the ZFS filesystem and uses
‘zfs send’ to send the snapshot to tape. If you do
an incremental backup, though, it creates another
snapshot and does an incremental ‘zfs send’ to
capture the changes from the last Amanda snap-
shot.

The drawback to backing up ZFS snapshots is
that if you have to restore a single file, you will
have to pull the entire snapshot for the filesystem
in question off tape in order to restore the file. If
the file is on an incremental backup, you’ll have to
restore the incremental and the full snapshot from
tape to restore the file.

You can reduce the chances of needing to
restore an individual file by establishing periodic
ZFS snapshot creation. If you have hourly, daily,
weekly, and monthly snapshots (pruned accordingly
so you don’t keep too much history), users can
restore accidentally deleted files themselves. This is
much faster than pulling the file off tape and
hopefully requires no administrator support other
than pointing the user in the right direction.

Bacula
Bacula is the other major open-source backup
package available on FreeBSD. It offers a myriad of
features as well. It is available in the ports tree at
sysutils/bacula-server.

One of the major features of Bacula is that it
does do file-based backup. If you do need to
restore individual files from tape, and you don’t
want to pull the entire filesystem off tape, Bacula is
an excellent solution. It stores the list of files in a
database like Postgres or MySQL.

Built-in Tools
FreeBSD ships with several tools that natively talk
to tape.

• tar(1) is not just a utility for distributing source.
It stands for Tape ARchive, and tar variants have
been around since UNIX Version 7. If you need to
quickly send a group of files to tape, tar(1) will do
that for you, and the tape should be readable on
most any Unix system.

• dump(8) is the system utility for backing up
UFS filesystems, and it also talks to tape. Dump will

preserve the full metadata of the filesystem, and is
a great tool for full backups. You can also do incre-
mental backups with dump(8).

• dd(1) also knows how to talk to tape. If you
just want to copy blocks off a tape, you can use
dd(1) to do it. For example: “dd if=/dev/nsa0
of=my_tape_image bs=128k”. dd will read until it
encounters a file mark. You can run dd again to
pull blocks off tape after you encounter a filemark.

• camdd(8) knows how to talk to tape. I wrote it
as a faster, multithreaded version of dd and as an
example of how to use to the asynchronous pass(4)
driver interface. One of its features, though, is that
it can talk to tape. For example: “camdd –i pass=
da5,bs=128k,depth=8 –o file=/dev/nsa0,bs=128k”.
That will issue 8 128KiB reads at a time via the
pass(4) driver to the disk da(5) and write those
blocks in order (which is very important!) to tape
one at a time.

LTFS
LTFS stands for the Linear Tape File System. This is
what it seems to be—a filesystem on a tape. It is
intended to be both a filesystem that you can use
to read and write individual files and a standard
interchange format.

LTFS uses two partitions on tape, an Index parti-
tion and a Data partition. All of the filesystem
metadata, including the location of each file’s
blocks on tape, is stored in an XML file that lives
on the index partition and is included in the data
partition. When you add files to the filesystem, a
new version of the index is generated and written
to tape.

IBM originally wrote LTFS, and transferred the
standard to SNIA (https://www.snia.org/tech_
activities/standards/curr_standards/ltfs). The LTO
Consortium (http://lto.org) offers compliance test-
ing and certification for LTFS implementations, so
that different vendors can insure their implementa-
tions will work with others.

IBM has offered the source for its version of LTFS
(also called Spectrum Archive Single Drive Edition)
that talks to IBM tape drives for a number of years.
IBM BSD licensed their version of LTFS in October
2017 (it was previously licensed under the LGPL),
and it is available here:

I ported IBM’s LTFS to FreeBSD in 2013 (spon-
sored by Spectra Logic), and I am in the process of
preparing that work for a pull request so that it
can go into IBM’s tree.

https://github.com/LinearTapeFileSystem/ltfs

Jan/Feb 2018 17

LTFS works with LTO-5 drives and higher. It
requires tape partition support and a big enough
flash chip on the tape (called the MAM—Media
Auxiliary Memory).

IBM’s LTFS uses FUSE (Filesystem in Userspace) to
present a file interface. LTFS itself runs as a userland
process, and FUSE forwards the VFS requests to the
LTFS process.

LTFS isn’t a replacement for a backup program
like Amanda or Bacula. That is because it only talks
to individual tapes. It’s left to the user (or vendor) to
wrap a larger application around it to manage tapes
in the tape library and move data to and from the
tape.

The LTFS filesystem on FreeBSD would mostly be
useful as a tape interchange format. (Many media
companies use it.) If you have a lot of data, you
would really want a bigger application that could
use LTFS as its on-tape format.

Conclusion
Tape is still alive and is actively developed and used
for storing large volumes of data. Even if your data
lives in the cloud, it is likely backed up on tape.

If you have large volumes of data to back up,
you need air-gapped or offsite storage,
or you just want some genetic
diversity in your storage, tape
may be a good solution. •

KEN MERRY has been a FreeBSD commit-
ter since 1998, and a FreeBSD user since
1994. He is the coauthor of the FreeBSD
CAM I/O subsystem and the author of CTL,
the CAM Target Layer. He lives near
Atlanta with his wife and two sons.

Thank you!
The FreesBSD Foundation would like to
acknowledge the following companies for
their continued support of the Project.
Because of generous donations such as
these we are able to continue moving the
Project forward.

Please check out the full list of generous community investors at
freebsdfoundation.org/donate/sponsors

Are you a fan of FreeBSD? Help us give back to the
Project and donate today! freebsdfoundation.org/donate/

TM

TM

d seuntinor cieth
e thgdelwonkca
D FSBseee FrhT

nahT

re Pf tht oroppud s
pamog cniwolloe fe th
d lluon wotiadnuoD F

ou ykn

.

r

tcejor
r os feinpa

o e tkid l

!ou
U

diuiIr

laP

mniuar

mdiu

int

d.arwro ftcejoojrP
e are ase weth

nef gse ouaceB

TM

d.
oe muntinoo ce tlbe a

s snotianos duoren

TM

e

la

g thnivo
s h acus s P

oldG

umintla

old

 oe ttanod dnt acejorP

Beern of Fau a foye rA

taond/goron.itadnuofdsbeerf
f gt osil llue fht tuk ocehe csaelP

 o.noitadunofdsbeerf!ydao

ho tk tcae bvis gp ule? HDSB

soronsps/e
t s arotsevny itinummos cuorenef g

 /

l

teanod/gro
e h

iS

rev

