
svnUPDATE

28 FreeBSD Journal

S E E
T E X T
O N L Y

by Steven Kreuzer

Provide a sysctl to force synchronous initializa-
tion of inode blocks. https://svnweb.freebsd.org/
changeset/base/326731

FFS performs asynchronous inode initialization
using a barrier write to ensure that the inode

block is written before the corresponding cylinder
group header update. Some GEOMs do not
appear to handle BIO_ORDERED correctly, meaning
that the barrier write may not work as intended.
The sysctl allows one to work around this problem
at the cost of expensive file creation on new
filesystems.

Support mounted boot partitions in the
installer. https://svnweb.freebsd.org/
changeset/base/326674

This allows the platform layer, for example, to
specify that the EFI boot partition should

be mounted at /efi and formatted normally with
newfs msdos rather than splatted to from
/boot/boot1.efifat.

zfs_write: fix problem with writes appearing 
to succeed when over quota. https://
svnweb.freebsd.org/changeset/base/326070

The problem happens when the writes have off-
sets and sizes aligned with a filesystem's

recordsize (maximum block size). In this
scenario dmu_tx_assign() would fail because of
being over the quota, but the uio would already
be modified in the code path where we copy data
from the uio into a borrowed ARC buffer. That
makes an appearance of a partial write, so
zfs_write() would return success and the uio would

be modified consistently with writing a single
block. That bug can result in a data loss because
the writes over the quota would appear to suc-
ceed while the actual data is being discarded.

This commit fixes the bug by ensuring that the
uio is not changed until after all error checks are
done. To achieve that, the code now uses uio-
copy() + uioskip() as in the original illumos design.
We can do that now that uiocopy() has been
updated in r326067 to use vn_io_fault_uiomove().

Avoid holding the process in uread() and
uwrite(). https://svnweb.freebsd.org/
changeset/base/325887

In general, higher-level code will atomatically veri-
fy that the process is not exiting and hold the

process. In one case, we were using uwrite() to
copy a probed instruction to a per-thread scratch
space block, but copyout() can be used for this
purpose instead; this change effectively reverts
r227291.

Optimize telldir(3). https://svnweb.freebsd.org/
changeset/base/326640

Currently each call to telldir() requires a malloc
and adds an entry to a linked list which must

be traversed on future telldir(), seekdir(), closedir(),
and readdir() calls. Applications that call telldir() for
every directory entry incur O(n^2) behavior in
readdir() and O(n) in telldir() and closedir().

This optimization eliminates the malloc() and
linked list in most cases by packing the relevant
information into a single long representation. On
64-bit architectures msdosfs, NFS, tmpfs, UFS, and

What advantages does FreeBSD have over Linux? That’s a question I get asked quite a
bit, and it is hard to answer because FreeBSD does a lot of things really well. Where
do you start? You could ramble on about the robust networking stack or cutting-edge
technology such as DTrace and Capsicum for hours on end. However, I would argue
that the area where FreeBSD really shines is storage. Not only are developers spend-
ing quite a bit of time making sure that the 1s and 0s you save to the disk get written
in the correct order, but that it is doing so as quickly as possible. If that wasn’t enough,
they are also making sure that those same 1s and 0s get read back in the correct
order as quickly as possible. Whether you are just archiving family photos on your
laptop or serving a multi petabyte ZFS volume to thousands of clients on the network,
FreeBSD provides a robust and reliable platform to meet your storage needs.



Jan/Feb 2018 29

ZFS can all use the packed representation. On 32-bit
architectures, msdosfs, NFS, and UFS can use the
packed representation, but ZFS and tmpfs can only
use it for about the first 128 files per directory.
Memory savings is about 50 bytes per telldir(3)
call. Speedup for telldir()-heavy directory traversals is
about 20-30x for one million files per directory.

Tweak seekdir, telldir, and readdir so that when
there are deletes, seeks to the last location saved
will work. https://svnweb.freebsd.org/changeset/
base/282485

This is needed for Samba to be able to correctly
handle delete requests from windows. This does

not completely fix seekdir when deletes are present
but fixes the worst of the problems. The real solu-
tion must involve some changes to the API for eh
VFS and getdirentries(2).

Avoid the overhead of acquiring a lock in
nfsrv_checkgetattr() when there are no write
delegations issued. https://svnweb.freebsd.org/
changeset/base/326544

manu@ reported on the freebsd-current@ mail-
ing list that there was a significant perform-

ance hit in nfsrv_checkgetattr() caused by the acqui-
sition/release of a state lock, even when there were
no write delegations issued. This patch adds a count
of outstanding issued write delegations to
the NFSv4 server. This count allows nfsrv_checkge-
tattr() to return without acquiring any lock when the
count is 0, avoiding the performance hit for the case
where no write delegations are issued.

zfsd should be able to online an L2ARC that dis-
appears and returns. https://svnweb.freebsd.org/
changeset/base/325011

Previously, this didn't work because L2ARC
devices' labels don't contain pool GUIDs. Modify

zfsd so that the pool GUID won't be required.

Fix zpool_read_all_labels when vfs.aio.enable_
unsafe=0. https://svnweb.freebsd.org/changeset/bas
e/324991

Previously, zpool_read_all_labels was trying to do
256KB reads, which are greater than the default

MAXPHYS, and, therefore, must go through the
slow, unsafe AIO path. Shrink these reads to 112KB
so they can use the safe, fast AIO path instead.

Fix the error message when creating a zpool on
a too-small device. https://svnweb.freebsd.org/
changeset/base/324940

Don't check for SPA_MINDEVSIZE in
vdev_geom_attach when opening by path. It's

redundant with the check in vdev_open, and failing
to attach here results in the wrong error message
being printed.

Add vfs_zfs.abd_chunk_size tunable. https://
svnweb.freebsd.org/changeset/base/323797

It is reported that the default value of 4KB results in
a substantial memory use overhead (at least, on

some configurations). Using 1KB seems to reduce
the overhead significantly.

Add sysctls for arc shrinking and growing
values. https://svnweb.freebsd.org/changeset/
base/323051

The default value for arc_no_grow_shift may not
be optimal when using several GiB ARC. Expose

it via sysctl allows users to tune it easily. Also expose
arc_grow_retry via sysctl for the same reason. The
default value of 60s might, in case of intensive load,
be too long.

msdosfs(5): Reflect READONLY attribute in
file mode. https://svnweb.freebsd.org/changeset/
base/326031

Msdosfs allows setting READONLY by clearing
the owner write bit of the file mode. In msdos-

fs_getattr, intuitively reflect that READONLY attrib-
utes to userspace in the file mode.

Use taskqueue(9) to do writes/commits to 
mirrored DSs concurrently. https://
svnweb.freebsd.org/changeset/base/324676

When the NFSv4.1 pNFS client is using a Flexible
File Layout specifying mirrored Data Servers, it

must do the writes and commits to all mirrors. This
change modifies the client to use a taskqueue to
perform these writes and commits concurrently. The
number of threads can't be changed for
taskqueue(9), so it is set to 4 * mp_ncpus by
default, but this can be overridden by setting
the sysctl vfs.nfs.pnfsiothreads.

STEVEN KREUZER is a FreeBSD
Developer and Unix Systems
Administrator with an interest in retro-
computing and air-cooled Volkswagens.
He lives in Queens, New York, with his
wife, daughter, and dog.


