
S E E
T E X T
O N L Y

What is a desktop? Is it just the end-
goal of a graphical operating system (OS) such as
Windows? Or is a desktop the graphical subsystems
that can be paired with an operating system to pro-
vide application management and control? Is a
desktop something that requires keyboard and
mouse, or can a smartphone be considered a desk-
top? These are the kinds of questions that often
arise when people discover that I am a desktop
developer, but I think the essence of all these ques-
tions can be summarized in a single question: “Can
a desktop be distinct from the underlying operating
system?”

Apple and Android have taken the stance where-
by the desktop is just one of several tightly inte-
grated components that together provide a com-
plete graphical interface for the end-user. This
approach tends to reduce, or remove, any kind of
text-based usage of the OS, greatly limiting the
flexibility of that system. On the other end of the
spectrum, we have the Unix-like operating systems,
which typically have no built-in graphical capabili-
ties and treat all graphical protocols as optional
extras. So which approach is the best? (Figure 1)

The answer to this OS-model conundrum proba-
bly lies in the purpose of the operating system and
hardware combination for the end-user. From a dis-
tribution standpoint, a smartphone is treated as an
appliance and typically allows a very limited set of
functions. Because of this, it makes sense that the
desktop be inseparable from the rest of the operat-
ing system since the desktop is not meant to be
modified by the user. The same goes for Apple

smartphones and laptops where the software is
designed specifically for particular hardware, mak-
ing the desktop nearly useless without the corre-
sponding appliance. Where the boundaries start to
become blurred is when you examine the more
general-purpose operating systems, but overall
there are two common approaches toward tackling
the boundaries on these general-purpose systems.

The Windows operating system exemplifies the
first approach. It has historically been more like an
appliance, where the desktop is almost completely
entangled with the operating system. This approach
has done very well as a graphical workstation OS for
the past couple decades but tends to suffer in the
headless-server markets due to the extra overhead
for the graphical subsystems. Over time, Windows
has been regularly working on untangling the inter-
face from the OS and making the desktop compo-
nents more modular so that they can enhance their
functionality in the server market.

The second approach is exemplified by Unix-like
systems. These have completely optional graphical
components and correspondingly tend to do better
as servers than as workstations. Almost all the
desktops that are used with open-source operating
systems today, such as KDE, GNOME, and XFCE,
were born within this Unix-like environment.
However, these desktops have typically striven to
copy the Windows model and expect to be treated
more like an appliance rather than a modular com-
ponent of the OS. Figure 2 summarizes the major
desktops and where I would place them on the
spectrum of desktop modularity.

The design of the Lumina
desktop emphasizes the ben-
efits of a fully-modular desk-
top system and greatly dif-
fers from the other open-
source desktops. We per-
ceive that a fully modular
desktop results in an operat-
ing system that can be used

Fig. 1. Common operating system models

14 FreeBSD Journal

B Y K E N M O O R E

THE DESKTOP PA R A D I G M

Terminal
Interface Graphical Interface

Users, Services
OS

(Workstation/Appliance Model)

Graphical
Interface

OS
(Server/Unix Model)

Terminal Interface
Users, Services

March/April 2018 15

for both server or workstation design goals with
minimal disruption to the OS, as well as allow the
desktop itself to be extremely portable between
various operating systems. This is achieved by utiliz-
ing a standardized translation layer between the
OS and the desktop but suffers from a higher level
of code complexity in order to maintain this level of
separation. To address this complexity, we have
been developing an “OS Interface” class which acts
as a completely modular, client-side API object that
behaves as a dictionary for common high-level sys-
tem interactions. By reviewing and categorizing all
of the top-level OS interactions that a desktop may
need, we are able to easily write and maintain a
completely OS-agnostic translation layer that can
optionally use OS-specific services and utilities with-
out adding explicit requirements to the desktop
itself. Table 1 lists the OS subsystems that Lumina
interacts with for optional status indicators and
such. Note how few are actually used in this type
of desktop format, since the responsibility for OS-
modification now falls to the OS, rather than the
desktop, and can be as specific to the system as
desired.

This type of arrangement results in a highly flexi-
ble desktop interface where all the OS interactions
are both optional and readily configurable. All that

is needed on the OS side
to turn a traditional com-
mand line server into a
graphical workstation is to
install a few “desktop”
packages such as stand-
alone graphical tools for
configuring the OS and
the Lumina desktop for
everything else. When
paired with the flexible

interface system that Lumina has also implemented
(another subject for another article), a single oper-
ating system can power nearly all hardware config-
urations that utilize a graphical display.

The computing world is changing. The number
of types of computer systems, both hardware and
software, has been rapidly expanding, and operat-
ing systems must become more flexible in order to
remain relevant. In my opinion, the BSD operating
systems are particularly suited for this metamor-
phosis because they were designed with a minimal-
ist but self-contained framework for the operating
system and need relatively few adaptations to be
converted between different types of end-user sys-
tems. The Lumina desktop is designed to work
hand-in-hand with this type of operating system
and together can expand into more graphically-
focused market segments. With a continued focus
on modularizing the underlying OS itself, brand
new markets can be created that previously
seemed impossible due to the shear amount of
effort needed to create new “entangled” operating
systems from the ground up. •

.
KEN MOORE is the principal architect of the
Lumina desktop and a software engineer at
iXsystems Inc.

OS Subsystem Read Write Optional External Tool
Batteries Existence, status

Audio Current volume Set volume Full Audio Mixer
Network Type from device name Network Manager

External Media Media shortcuts
System Updates Existence, status, logs Start updates (on logout)
System Power Has permission Start shutdown/reboot

Screen Brightness Existence, status Set brightness
CPU State Supported, I/O
Memory Supported, status

Hard Drive Status Supported, I/O, % full
Applications App Store

Fig. 2. Spectrum of modularity for common desktops

Table 1: OS Interface interactions for the Lumina desktop

Apple, Android

Windows

GNOME

KDE

XFCE

Entangled Modular

