BY JOHN BALDWIN

ost consumer computing devices today
are mobile devices. These devices are

not tethered to a power outlet, but,

instead, are able to run on battery
power alone. One of the tasks of the operating
systems running on mobile devices is to maximize
the runtime while on battery. A primary way of
achieving this goal is to power off components of
mobile devices that are not in use (for example,
powering off the screen on a smart phone).

Stock FreeBSD does not currently run on several
classes of mobile devices such as phones.
However, FreeBSD has run on another class of
mobile device for many years: laptops.
Traditionally, laptops have not offered very fine-
grained power management, but they do permit
the entire system to be placed in a low-power
state when it is not being actively used.
Transitioning a laptop into a low-power state is
called "suspend” and returning the system to the
fully-operational state is called "resume."
FreeBSD only supports suspend and resume on

x86-based systems. In addition, while suspend
and resume is supported on both desktop and

FreeBSD Journal

g

laptop x86-based systems, development effort in
FreeBSD has only focused on laptops. Even then,
FreeBSD only successfully suspends and resumes
on a subset of x86-based laptops.

Suspend and Resume on x86

Support for suspend and resume in x86-based
systems has evolved over time.

The first standard for system-wide power man-
agement on x86 is called Advanced Power
Management (APM). It supports two different
low-power states: standby and suspend. The
standby state was able to return to the fully-oper-
ational state more quickly than the suspend state.
However, the suspend state used less battery
power as it turned more internal devices off.
While it is possible for the OS to control the
power usage of individual devices, this is not
required and the BIOS is generally responsible for
saving device state when suspending and restor-
ing the saved state when resuming. FreeBSD's
APM support relies on the BIOS to manage the
power of individual devices during suspend and
resume.



APM was replaced by the Advanced
Configuration and Power Interface (ACPI).

ACPI is a superset of APM as it includes several
other components for managing devices than just
power management. ACPI also adopted an expand-
ed set of system sleep states (see Table below).

SLEEP

STATE DESCRIPTION

] 0 SRR System is fully operational

) [P No components are powered off

S2 e Only CPUs are powered off

S3 e, All devices other than RAM are powered off
Y All devices are powered off, state saved

S5 e All devices are powered off, state lost

support ACPI. FreeBSD first supported suspend and
resume via ACPI for i386 in FreeBSD 5.0. Support
for amd64 (x86_64) was first available in FreeBSD
8.0. The S1 and S3 sleep states are supported, but
many laptops only support S3 as S1 offers little
power savings. FreeBSD does not support native S4.
FreeBSD is able to hibernate on sys-
tems supporting S4BIOS, but mod-
ern laptops do not support S4BIOS.

System Control Nodes

FreeBSD creates several system con-
trol (sysctl(8)) nodes related to sus-
pend and resume under the
hw.acpi node. Some nodes pro-
vide information while other nodes

The S1 state in ACPI is similar to APM's standby
state, and the S3 state is similar to APM's suspend
state. ACPI also includes an S4 state (known as
"hibernate") similar to S3 except that the contents
of RAM are saved on a hard drive (or similar
device). Resuming from S4 requires loading this
saved copy back into RAM. Finally, ACPI adds an
S5 state which allows the operating system to
power off a device. In conjunction with this
change, ACPI notifies the operating system when
the power button is pressed by the user to give
the operating system time to perform an orderly
shutdown before the system is powered off.

In contrast to APM, ACPI requires the host oper-
ating system to actively manage the power state of
many devices in a system during suspend and
resume. For example, the OS is required to save
and restore PCl config space register values for all
PCI devices in the system for sleep states such as
S3 that power off devices.

To aid the adoption of hibernation, early sys-
tems supporting ACPI's S4 sleep state included an
option for the BIOS to assist with saving and
restoring the contents of RAM. This option is
called S4BIOS. When S4BIOS is supported, the
BIOS saves the contents of RAM (usually to a dedi-
cated hard drive partition owned by the BIOS) and
restores the contents of RAM during resume from
S4. When S4BIOS is not used, the OS is responsible
for saving the contents of RAM to some type of
0OS-managed nonvolatile storage during suspend.
During resume, the system powers up and follows
the normal bootstrap process. The OS bootstrap is
required to recognize a boot as being a resume
from S4, locate the saved copy of RAM, and load
the saved copy into RAM rather than performing a
normal bootstrap.

While FreeBSD does include limited support for
APM, the majority of modern x86 systems only

are used to control suspend and
resume behavior.
The definition list format is below.

hw.acpi.supported sleep state
List of ACPI sleep states supported by the host.

hw.acpi.s4bios
Indicates if the host supports S4BIOS.

hw.acpi.sleep delay

Number of seconds to pause during a suspend oper-
ation after all devices have been suspended, but
before the ACPI driver asks the firmware to enter the
requested sleep state. Defaults to 1 second.

hw.acpi.reset video

Can be set to 1 to request the kernel to use a legacy
BIOS interface to reset the graphics adapter during
resume. This generally does not work on modern lap-
tops but did fix issues on some older systems.
Defaults to 0 (off).

hw.acpi.standby state

The ACPI sleep state to enter when a userland appli-
cation requests a transition to the APM "standby"
state via the legacy APM interface. Defaults to ST if
the host supports S1.

hw.acpi.suspend state

The ACPI sleep state to enter when a userland appli-
cation requests a transition to the APM "suspend"
state via the legacy APM interface. Defaults to S3 if
the host supports S3.

hw.acpi.lid switch state
The ACPI sleep state to enter when the user closes
the lid on a laptop. Defaults to NONE.

hw.acpi.sleep button state

The ACPI sleep state to enter when the user presses
the suspend hotkey on a laptop keyboard. Defaults to
the lowest suspend sleep state (ST - S4) supported by
the host.

hw.acpi.power button state
The ACPI sleep state to enter when the user presses
the power button on the host. Defaults to S5.

March/April 2018



On a Lenovo ThinkPad X220 the initial values of

these nodes after boot are:

: hw.acpi.supported sleep state: S3 S4 S5 5

i hw.acpi.s4bios: 0

hw.acpi.sleep delay: 1

hw.acpi.reset video: 0

i hw.acpi.standby_ state: NONE

! hw.acpi.suspend state: S3

hw.acpi.lid switch state: NONE

hw.acpi.sleep button state: S3

i hw.acpi.power button state: S5

This indicates that this system supports S3 (sus-

pend), S4 (native hibernate), and S5 (soft-off).
Pressing the sleep button suspends via S3. The
power button triggers a graceful shutdown and
power off. Closing the lid doesn't result in any
action. The laptop can be configured to suspend
via S3 when the lid is closed by setting the
hw.acpi.lid switch_state node to S3:

! # sysctl hw.acpi.lid switch state=S3

{ hw.acpi.lid switch state: NONE -> S3

B eeeeettettnctettectntenstnstnctectettrstnstnstrctetttstrstrstrettstestestrssrssrestesesstserssresreststessrserosne i

Userland Utilities

FreeBSD provides interfaces for userland utilities to
request system suspension or shutdown. Third
party applications such as window manager widg-
ets can use these interfaces to permit user-initiat-
ed suspensions.

Several base system utilities can also request
sleep state transitions. The shutdown(8) and
halt(8) utilities accept a -p flag to request that the
system be powered off via S5 after a clean shut-
down. The poweroff(8) utility is an alias for halt
-p. In addition, the acpiconf(8) utility requests a
sleep state from S1 to S4 via the -s flag.

Device Driver Support

Device drivers are also responsible for saving and
restoring state during suspend and resume. Bus
drivers are responsible for saving bus-defined state
for each child device before the system is suspend-
ed and restoring that state upon resume. Leaf
device drivers are responsible for saving and
restoring device-specific state. Device drivers
should also quiesce active devices when preparing
for suspend and restart any paused activity when
resuming. Two bus drivers that require explicit sus-
pend and resume support are the ACPI and PCl
bus drivers.

The ACPI bus driver primarily manages power
states of child devices and power resources.
During a suspend request, the ACPI bus driver
uses information from ACPI's device tree to place

FreeBSD Journal

any ACPI devices supporting low power states into
a firmware-indicated power state while preparing
to suspend. These devices are restored to full
power upon resume. In addition, the ACPI device
tree describes the relationship between power
producers and devices consuming power. If all of
the devices that draw from a given power provider
are turned off while preparing for suspend, then
the ACPI bus driver will turn off the power pro-
ducer. During resume, the ACPI bus driver restores
power to the power producer before any of the
associated devices are restored to full power.

Similar to the ACPI bus driver, the PCI bus driver
is responsible for placing PCI devices into low power
states (using firmware hints to choose specific states
when available) while preparing to suspend and
then restoring devices to full power on resume.
Unlike ACPI, the PCl bus does not define power pro-
ducer and consumer relationships. If PCI devices
depend on discrete power producers, that relation-
ship must be described in ACPI's device tree and
managed by the ACPI bus layer. As a result, the
ACPI and PCI drivers do share some joint responsibil-
ity for power management of PCl devices.

Unlike the ACPI bus driver, the PCl bus driver is
also responsible for saving and restoring standard-
ized configuration registers of devices. While
preparing to suspend the system, the PCl bus driv-
er takes a snapshot of all of the standard PCI con-
figuration registers including registers to manage
resource allocation, interrupt routing, and device
control. The PCl bus driver saves the existing val-
ues of these registers for each PCl device before
the device is placed into a low power state. (Once
a device is placed into a low power state it no
longer responds to requests to read or write to
most configuration registers.) During resume, the
PCl bus driver restores the value of these registers
after the device has been restored to a fully-pow-
ered state.

All bus drivers including both ACPI and PCl
invoke two methods in each device's driver to give
leaf device drivers a chance to save and restore
device-specific state. The device_ suspend
method is invoked by a bus driver while preparing
to suspend the system. The device resume
method is invoked by a bus driver during resume.

The device_ suspend method is invoked by
the bus driver on each device before placing the
device in a low-power state. Device drivers use this
method to save a copy of device-specific registers
as well as to pause any current activity and disable
any active interrupts. For example, a driver for a
network interface card will disable the card's
receiver and disable any interrupts. In addition, if a
device is able to wake the system from suspend,
the suspend method should enable this functional-



ity if configured. Some network interface cards per-
mit a system to be awoken via special network
packets using a facility known as Wake On LAN
(WOL). If the administrator has requested WOL for
a specific network card via ifconfig(8), the driver's
suspend method should enable WOL.

The device resume method is invoked by the
bus driver on each device after the device has been
restored to a fully-powered state. Device drivers use
this method to restore any device-specific registers
and resume any previously-paused activity. Devices
supporting wake functionality may also need to
disable that feature. For a network interface card
driver, a resume method will typically restart trans-
mission of any pending packets and enable the
card's receiver.

Despite all of the work performed on suspend and
resume in FreeBSD, suspend and resume only work
on a limited set of systems to date. Unfortunately,
an issue with a single device driver can cause the
suspend and resume of an entire system to fail.

Diagnosing the cause of a suspend or resume
failure is rather difficult. Typically, when suspend or
resume fails, the laptop just hangs with a powered-
off screen. Since the screen is powered off, one
cannot use messages displayed on the console to
narrow down the cause for the failure. If a laptop
includes a non-USB serial port, then one can log
messages over the serial port (by using a serial con-
sole for example). However, modern laptops gener-
ally do not include serial ports. Some laptops do
provide a virtual serial port (such as via Intel's
AMT), but those serial ports do not reliably resume
to working operation during a failed resume
attempt in the author's experience.

In some cases, a laptop will mostly resume but
leave the screen powered off. The keyboard will
still respond to input, however, and if one has sus-
pended in single user mode, one can type blindly
to run commands to determine if the laptop is in
this state. For example, typing ‘poweroff' followed
by Enter when in this state should result in a spike
in hard drive activity followed by the machine turn-
ing off a few seconds later.

This particular failure mode is in fact the most
common type of resume failure in the author's
experience. If the laptop's graphics adapter is sup-
ported by a GPU driver such as i915kms.ko, then
loading this driver before suspending will usually
resolve this particular failure case.

Additional suggestions for debugging some
other suspend and resume failures can be found at
https://wiki.freebsd.org/SuspendResume.

There is certainly room for improvement and future
work on suspend and resume. Two main areas of
work include support for ACPI's S4 state (hiber-
nate) and ACPI's new low-power idle states.

FreeBSD does not yet support native S4 or hiber-
nate. Unlike the S3 suspend mode, resume from S4
follows a normal power-on process prior to resum-
ing the operating system. This leaves the hardware
in a state similar to initial boot and depends on the
firmware's bootstrap to initialize devices to a known
state. This should make resuming from S4 less sus-
ceptible to device-specific issues such as failing to
restore power to the screen. Hibernate also offers
greater power savings compared to S3. While sus-
pended in S3, a laptop still draws power. If the bat-
tery is exhausted while in S3, the saved state in
memory is lost. With S4, the system does not draw
power while suspended and can remain suspended
indefinitely. In addition to supporting native 54,
FreeBSD should also provide better support for sus-
pend and resume policy management, such as auto-
suspending when a laptop's battery is low.

Beyond support for hibernation, the next major
challenge for FreeBSD will be support of ACPI's
new low-power idle states. ACPI 6.0 introduces a
new model for system power management. Rather
than using monolithic, system-wide sleep states,
low-power idle states encourage more fine-grained
power control of both devices and processors. In
this model, the operating system seeks to minimize
power usage by leaving both devices and proces-
sors in low-power states whenever possible. In
addition, when responding to wake events such as
a WOL packet, the operating system should only
restore power to those components of the system
needed to handle a specific event leaving other
components in a low-power state. While current
systems still support ACPI's traditional system-wide
sleep states, the expectation is that low-power idle
states will eventually supplant system sleep states
on systems such as laptops and desktops. This will
reguire a more pervasive understanding of power
usage and power producer/consumer relationships
through all of FreeBSD's device driver infrastructure
as well as alternate approaches to thread schedul-
ing at a minimum. ®

JOHN BALDWIN joined the FreeBSD Project as
a committer in 1999. He has worked in several
areas of the system, including SMP infrastruc-
ture, the network stack, virtual memory, and
device driver support. John has served on the
Core and Release Engineering teams and
organized several FreeBSD developer summits.

March/April 2018



