P o

o o
2018 is going to be a big year for
not only FreeBSD, but for OpenZFS
as well. OpenZFS is the collaboration
of developers from lllumOS, FreeBSD,
Linux, Mac OS X, many industry ven-
dors, and a number of other projects
to maintain and advance the open-
source version of Sun’s ZFS filesystem.

Improved Pool Import
+2018Q1

A new patch set changes the way pools are
imported, such that they depend less on con-
figuration data from the system. Instead, the
possibly outdated configuration from the sys-
tem is used to find the pool, and partially open
it read-only. Then the correct on-disk configura-
tion is loaded. This reduces the number of
errors that may prevent a pool from importing.
The patch also improves the error messages to
better explain what has gone wrong when the
pool could not be imported. Additionally, it adds
a long-sought-after feature, the ability to import
a pool with a missing top-level device. Such
imports are read-only since too much data is miss-
ing for the pool to be used normally, but some
data may be recoverable.

ZFS Device Evacuation * 2018Q1

The ability to remove excess VDEVs from a pool.

Data residing on stripe (non-redundant) or mirror

VDEVs can be "evacuated”, and moved to devices
that will remain, allowing the selected VDEV to be
removed from the pool. This is accomplished using
an indirection table, where ranges of blocks from the
removed device are remapped to another device. This
feature does not work with RAID-Z VDEVs, and sup-
port is not currently planned.

16 | FreeBSD Journal

. 2018 and Onward. . . .

BY ALLAN

100

ZFS RAID-Z Expansion
»2018Q4

The ability to add an additional disk to an
existing RAID-Z VDEV to grow its size with-

out changing its redundancy level. For
example, a RAID-Z2 consisting of 6 disks

could be expanded to contain 7 disks,
increasing the available space. This is
accomplished by reflowing the data across

the disks, so as to not change an individual
block’s offset from the start of the VDEV. The
new disk will appear as a new column on the
right, and the data will be relocated to main-
tain the offset within the VDEV. Similar to
reflowing a paragraph by making it wider,
without changing the order of the words. In
the end this means all of the new space shows
up at the end of the disk, without any frag-
mentation. Sadly, existing fragmentation within
the VDEV is maintained. In the future it may be
possible to use a similar scheme to increase the
redundancy level (convert a RAID-Z1 to a RAID-
Z2 by adding an additional disk), but that is not
part of the current project specification.

LN « L

ZFS ZStandard Compression
+2018Q2

This project will incorporate Facebook’s new
Zstandard compression algorithm into ZFS as an
optional transparent compression algorithm. This
new algorithm is designed to provide compression
ratios as good or better than gzip, but many times
faster. Developed by Yann Collet, the author of LZ4,
the algorithm that has been the default in OpenZFS
for many years, ZSTD provides a more enticing trade-
off between compression and performance. While
not as fast as LZ4, it can achieve much greater com-
pression, and still saturate many spinning disks with
just a few CPU cores. It also offers greater control;

&

&

[4

L 4

with 19 levels of compression to choose from,
each dataset can be configured with the opti-
< mal amount of compression.

° @ 7FS Adaptive Compression

4

' 4

« ¢+ Under Investigation

The adaptive compression feature is still under-
going preliminary investigation, but, if imple-
mented, would see ZFS automatically adjust
the compression ratio up and down as the data
is being written, depending on the amount of
dirty data waiting to be compressed and writ-
ten. When the system is not busy, additional
CPU time can be allocated to compressing data,
but when the throughput of the compression is
not able to keep up with the demand of writes,
the compression level will be lowered to avoid
becoming a bottleneck.

FreeBSD ZFS Spare and Fault
Management * 2019Q1

Enhancements to the way FreeBSD boots from
ZFS, to bring it more in line with the original
design of ZFS. These changes will obviate the
need for a freebsd-boot partition and allow the
creation of the partition table to be handled by
ZFS instead of GEOM, and, therefore, make it
possible for zfsd and the ZFS fault management
framework to automatically attach replacement
devices to the pool and begin the resilver opera-
tion without requiring administrator action.
Currently this is only possible if the entire device is
dedicated to ZFS and does not have a partition
table. To be able to boot from the device, a freeb-
sd-boot or EFI ESP partition must exist for the sys-
tem to boot from. In the original design of ZFS,
there is an area dedicated to storing legacy BIOS
bootcode, but it is only used under FreeBSD if the
disk is partitioned MBR. In other implementations of
ZFS, if the entire disk is used for ZFS, a basic parti-
tion table is created that marks the entire device as
a single ZFS partition. When ZFS was ported to
FreeBSD, the ‘whole_disk’ flag was taken literally,
and the raw disk is used by ZFS. With some
enhancements that have been proposed upstream to
create an EFl partition as part of the ZFS whole_disk
layout, with some minor changes FreeBSD could
work the same way. This means that hot spares and
disks that are swapped after a failure could automati-
cally be labeled, partitioned, and made active in the
pool, without requiring a human as they often do

NOow.

- e e e -

- « ® . w - = = -

; .. - - - - o - - - - - = -
- e @ - - - - - - - - - -~ W - - -

e @ o - @ = - - - - - - w W, -
- - @ @ -~ - - = -~ - - - - -~ - =
ZFS Persistent L2ARC - s =
¢ 2018Q3 - s s
The ZFS L2ARC provides a second-level

cache, allowing a high-speed device likean ® * =
SSD or NVMe to provide another tier of

cache between the ARC (in RAM) and the - s
main storage pool. This can be extremely

important in order to get the required level N N
of performance where it is not economical,

or possible, to have an amount of main mem- =

ory larger than the working set. The L2ARC
relies on headers in the ARC to point to the
data stored in the L2ARC. The ARC is not per-
sistent, since it is stored in main memory, so
when the system is rebooted, the L2ZARC con-
tents are orphaned. At boot the L2ARC is con-
sidered empty and is refilled as the cache heats
up. This can result in a significant loss of per-
formance until the cache has rewarmed. This is
somewhat mitigated by configuration options
that increase the fill speed of the L2ZARC when
it is cold. The new Persistent L2ZARC feature
keeps log records on the L2ARC that can be
reloaded after the system boots. Once the sys-
tem is online, it asynchronously recreates the
ARC headers that point to the data on the
L2ARC, allowing its contents to persist through a
reboot. While they are not available immediately,
the system reaches a hot cache state a lot more
quickly than without this feature, and with less
wear on the L2ARC devices.

ZFS Sequential Resilver
* Pending Integration

One of the advantages of ZFS is that because the
filesystem and the volume manager are combined,
ZFS is aware of which bytes on the disk are in use,
and which are not. A disk that is only 1/3 full will
only need to resilver that 1/3 of the data, rather
than the entire contents of the disk like with a typi-
cal hardware RAID. However, to affect this advan-
tage, ZFS scans the content in the order the objects
appear in its metadata. This can result in a very large
number of random reads and writes, which perform
much worse than sequential reads and writes. This
enhancement to the resilvering process will scan the
metadata and build a range tree of blocks that will
need to be resilvered. Once this tree reaches a con-
figured size limit, the largest contiguous range of
blocks in the tree are resilvered, and then the meta-
data scan continues, until the range tree is full again.
This approach ensures that the resilver I/Os are done

March/April 2018 | 17

- e e s e e e e 2 e e = - - - ® -

in large contiguous ranges which will provide
much better performance.

- ZFS Resilver Prefetch
- . Improvements * Design Review

This set of improvements aims to increase the
resilver performance in a different way that com-
plements the sequential resilver work. The new
prefetcher is closer to a depth-first search, rather
than only working ahead of the scrub and
stalling at the end of each sub-tree. In the new
system, a demand read completion triggers the
next batch of prefetch operations, keeping the
I/0 queue full. Configuration prevents more than
two scrub prefetch I/Os outstanding at once, pre-
venting the prefetch from delaying actual scrub

operations.

ZFS Ashift Policy ¢ Design Phase

The goal of this work is to support time-variable
geometric. Allowing older 512-byte sector disks to
be replaced with newer 4096 byte sector disks
without the performance penalty of doing sub-sec-
tor writes. Even now, many disks are 4Kn (4k
Native), and will refuse to perform sub-sector I/Os.
This feature allows an allocation policy to be set
that all future allocations will be at least 4k and

avoid the performance hit.

ZFS Spacemap Log ¢ Design Review

ZFS uses a data structure called a spacemap to track
which space on the disks is free for future alloca-
tions. There is both an in-memory and an on-disk
representation of the spacemap. Usually a small
number of spacemaps are kept loaded at a time,

and allocations are made from those maps. Under
heavy fragmentation, the system can spend a lot of
time trying to find free space to allocate from. The
existing spacemap histogram feature helps mitigate
this. The spacemap log feature will improve allocation
performance by writing allocations and frees to an
append-only log, which will then be coalesced into
the traditional spacemap data structure once the log
exceeds a configured size. In the event of a crash, the
last spacemap is loaded, and then the changes speci-
fied in the spacemap log and replayed to bring it up

to date.

Native Data and Metadata
Encryption ¢+ Code Review

The native encryption support is based on a design
similar to, but not compatible with, that used in the
Oracle proprietary version of ZFS. The implementation
allows a number of useful features, including authenti-
cated encryption, meaning that not only is the privacy

18

-

&

FreeBSD Journal

@ @ e e el S e e e e i e mn e R w Mmoo wm e

of the data protected, but the integrity as
well. The OpenZFS implementation allows
each dataset to be encrypted with a different <
key, or to inherit the key from its parent
dataset. Keys can be loaded and unloaded as
needed, so data can actually be put at rest,
where encryption provides more meaningful
protections, by unmounting the dataset and
unloading its encryption key. Another useful
feature is the fact that the checksum is split
between the traditional checksum of the plain-
text and the authentication data from the
encryption cipher, which protects the ciphertext.
This means that ZFS can detect corruption or
modification of either form, but it also means
that scrub and resilver operations can proceed
even when the encryption keys are not loaded.
And it means that encrypted datasets can be
replicated in their encrypted form, making it
impossible to read them on the receiving side
without the correct keys.

Windows Port ¢ Early Preview

This last item is mostly just for fun. Some of the
people behind the OpenZFS-on-OS-X project won-
dered how much work it would take to get
OpenZFS running on Microsoft Windows. As it
turns out, it is not as impossible as you might
think. You can check out the GitHub page
https://github.com/openzfsonwindows/ZFSin

if you want to learn more.

/
01

[

-

* Conclusions

OpenZFS has come a long way since its split with
OpenSolaris in 2010, and the official formation of
the OpenZFS organization in 2013. More than 50%
of the code that exists in OpenZFS today is either
new or replaced from the original OpenSolaris code.
OpenZFS is continuing to lead the way in filesystem
development, and the pace is only increasing as
more projects and vendors join the effort.

You can find out more about many of these and
other recently added and upcoming features of
OpenZFS from the OpenZFS Developers Summit 2017
wiki page, which includes slides and video from each
of the presentations: http://open-zfs.org/wiki/
OpenZFS_Developer_Summit_2017. e

ALLAN JUDE is VP of operations at ScaleEngine Inc., a
video streaming content distribution network, where he
makes extensive use of ZFS on FreeBSD. Allan is a
FreeBSD src and doc committer, and was elected to the
FreeBSD core team in summer 2016. He is also the host of
the weekly video podcast BSDNow.tv (with Benedict
Reuschling), and coauthor of FreeBSD Mastery: ZFS and
FreeBSD Mastery: Advanced ZFS with Michael W Lucas.

