
18 FreeBSD Journal

S E E
T E X T
O N L Y B y M a r i u s z Z a b o r s k i

Capsicum
pplying sandboxing always seems challenging
and there is a historic reason for this. For

example, using linux seccomp(2)–one of the old-
est sandboxing techniques–requires a lot of effort.
The simplest mode of seccomp(2) —
SECCOMP_SET_MODE_STRIC– restricts a program
to an unusable state. On the other hand, the most
popular mode–SECCOMP_SET_MODE_FILTER–is
very hard to apply and maintain and it can also
easily betray us. In this article, we discuss a sand-
boxing technique built in FreeBSD called Capsicum.
If the reader is interested in a deeper comparison
between different popular sandboxing techniques,
the author recommends a few articles [1] [2] [3].
Here we will discuss what Capsicum is, the tooling
we have and, most importantly, how we can use it
in our applications.

Overview of Capsicum
The Capsicum infrastructure can be divided into
two parts:

• Tight sandboxing
• Capability rights
Tight sandboxing means we don’t have access

to any global namespaces. With a global name-
space, we are referring to a limited area within an
operating system. These areas have a set of names
that allows the unambiguous identification of an
object [4]. To simplify it, we can’t operate on
objects using their identifier like a filepath. This
tight sandbox still allows us to operate with objects
by using their handlers. In UNIX-like operating sys-
tems, we have one universal handler—descriptor—

and we can operate on the file using a file descrip-
tor. The same with a process. In this mode, we
can’t operate on a process using PID, but we can
operate on it using a process descriptor [5]. In
Capisucm, this mode is called Capability mode. In
FreeBSD, we have one simple syscall to enter this
mode—cap_enter(2).

With Capsicum we go one step further by per-
mitting limitations on the descriptors. If we have a
descriptor that we know will be used only to read,
we can set a specific right (CAP_READ) that will
ensure this particular descriptor will be read-only. If
there is an attempt to write on this particular
descriptor, it will fail. We refer to these limitations
as capability rights. It is always possible to limit
descriptors further, but we can’t extend the capa-
bility rights of a given descriptor. That means if we
have a descriptor with the CAP_READ and
CAP_WRITE capability and at some point we
decide we don’t want to read any more of this
descriptor, we can drop the capability. For obvious
reasons, it doesn’t allow you to extend them. In
FreeBSD, we have a special function—
cap_rights_limit(2)—which allows us to
limit descriptors. Currently we have 79 rights that
allow granularity limit handlers.

Thanks to capability mode and capability rights
we can ensure that a process has access only to
objects that it really needs. This eliminates the
ambient authority problem, where any process has
access to all user data. If an attacker would exploit
a tool like grep(1), patch(1) or even cat(1),
he would gain access to all user data. An attacker

JUST APPLY ME!

A

®

May/June 2018 19

could also create a new connection to an arbitrary
server and send those files to it. In a Capsicum world,
even if an attacker could exploit any of those tools, he
would have read-only access to a few files on the
disk. He wouldn’t be able to overwrite any important
data or send them over to the network.

Extending Capabilities
There are two methods by which we can obtain capa-
bilities:

• initialization phase
• obtain them from another process
In the first case, we pre-open all connections, files

etc. needed in our application before entering capabil-
ity mode and we can only operate on those capabili-
ties. This method is ideal for small applications that
have limited functionality.

The second method is to use another process that
already has the capability rights to the object we
want. Because all objects are represented by descrip-
tors, we can easily pass them from one process to
another using UNIX domain sockets. If one process
has a descriptor to talk with a server, it can pass it to
another process, in which case both processes can
operate on the single descriptor.

A very commonly used pattern with Capsicum is
having two processes. The first has ambient authority
so it can operate on behalf of the user, and the sec-

ond is sandboxed. The ambient authority process is
used only for simple things like opening a list of files
or connecting to a server. The sandboxed process does
all the complicated logic of the application ex. pars-
ing. The privileged process is connected with a sand-
boxed process over a UNIX domain socket and simply
serves the next file descriptors to be parsed. If an
attacker exploited our parser (which is very common),

On the left, the privileged process can open files and serves
them to a sandboxed process. On the right, an attacker has

exploited the process—access to FS is denied.

Process in
capability

mode

Privileged
process

Privileged
process

Exploited
process in
capability

mode

FS FS

Thank you!
The FreesBSD Foundation would like to
acknowledge the following companies for
their continued support of the Project.
Because of generous donations such as
these we are able to continue moving the
Project forward.

Please check out the full list of generous community investors at
freebsdfoundation.org/donate/sponsors

Are you a fan of FreeBSD? Help us give back to the
Project and donate today! freebsdfoundation.org/donate/

TM

TM

d seuntinor cieth
e thgdelwonkca
D FSBseee FrhT

nahT

re Pf tht oroppud s
pamog cniwolloe fe th
d lluon wotiadnuoD F

ou ykn

.

r

tcejor
r os feinpa

o e tkid l

!ou
U

diuiIr

laP

mniuar

mdiu

int

d.arwro ftcejoojrP
e are ase weth

nef gse ouaceB

TM

d.
oe muntinoo ce tlbe a

s snotianos duoren

TM

e

la

g thnivo
s h acus s P

oldG

umintla

old

 oe ttanod dnt acejorP

Beern of Fau a foye rA

taond/goron.itadnuofdsbeerf
f gt osil llue fht tuk ocehe csaelP

 o.noitadunofdsbeerf!ydao

ho tk tcae bvis gp ule? HDSB

soronsps/e
t s arotsevny itinummos cuorenef g

 /

l

teanod/gro
e h

iS

rev

he wouldn’t have any access to any other part of
the system—but only to another read-only file.

Capsicumizing
Capsicumizing is a funny name that we use to
describe the process of sandboxing existing appli-
cations. Currently in FreeBSD we have around 60
sandboxed applications. From very simple ones
such as yes(1), to some more complicated like
jot(1), to much more complex ones like tcp-
dump(1) and ping(8). There is a decent num-
ber of sandboxed applications, but we still work
all the time to sandbox more of them. The full list
of applications and current progress can be fol-
lowed on the Capsicum wiki [6]. In Example 1, we
have a patch for capsicumizing cmp(1), a pro-
gram that compares two files. In this patch, we
use a method to pre-open all files that we need
before entering capability mode. cmp(1) is work-
ing on two descriptors fd1 and fd2 and both
have capability CAP_FSTAT and CAP_FCNTL,
which respectively allow us to get a file status
using the fstat(2) function and fcntl(2) for
file control. (The cmp(1) uses the fdopen(3)
function that requires fcntl(F_GETFL). In the
original patch, we also limit the amount of
fcntls(2) using cap_fctnls_limit(2),

but this is beyond the scope of this article.) We
also give descriptors the CAP_MMAP_R capability
which allows us to map file into the memory. At
the end, we limit the stdout descriptor and pre-
cache the native language support data (NLS).
Finally, we enter the capability mode.

It is very straightforward. For this particular
application we didn’t even need to reorganize the
code because all the files were already opened in
one place before parsing, and so the initialization
phase was really easy to find. Then we limited
some of the descriptors and entered capability
mode.

Capsicum Helpers
In Example 1, we have one change that is not
obvious when you see it for the first time—calling
catopen(3) to cache NLS data. Normally when
we call the err(3) function for the first time, it
goes to file system and opens a file for NLS.
Unfortunately, in compatibility mode this can’t be
done because it can’t open the file.

There is one more known issue with pre-
caching things in libc which deals with manipu-
lating time. The functions like localtime(3)--
when we call them for the first time—pre-cache
the current time zone of the machine and they do

20 FreeBSD Journal

--- usr.bin/cmp/cmp.c
+++ usr.bin/cmp/cmp.c
@@ -68,2 +71,5 @@ main(int argc, char *argv[])

const char *file1, *file2;
+ cap_rights_t rights;
+ unsigned long cmd;
+ uint32_t fcntls;

@@ -148,2 +154,19 @@ main(int argc, char *argv[])

+ cap_rights_init(&rights, CAP_FCNTL, CAP_FSTAT, CAP_MMAP_R);
+ if (cap_rights_limit(fd1, &rights) < 0 && errno != ENOSYS)
+ err(ERR_EXIT, "unable to limit rights for %s", file1);
+ if (cap_rights_limit(fd2, &rights) < 0 && errno != ENOSYS)
+ err(ERR_EXIT, "unable to limit rights for %s", file2);
+
+ cap_rights_init(&rights, CAP_FSTAT, CAP_WRITE, CAP_IOCTL);
+ if (cap_rights_limit(STDOUT_FILENO, &rights) < 0 && errno != ENOSYS)
+ err(ERR_EXIT, "unable to limit rights for stdout");
+
+ /*
+ * Cache NLS data, for strerror, for err(3), before entering capability
+ * mode.
+ */
+ (void)catopen("libc", NL_CAT_LOCALE);
+
+ if (cap_enter() < 0 && errno != ENOSYS)
+ err(ERR_EXIT, "unable to enter capability mode");
+

if (!special) {

Example 1. Capsicumizing cmp(1), simplified patch proposed by Conrad E. Meyer.

May/June 2018 21

that only the first time.
Due to these unclear behaviors, Capsicum

helpers were created. Capsicum helpers are a set of
small inline functions that allow us to pre-cache
things i.e. time zones and NLS data.

The man page for them is also a good place to
document this unclear behavior. So for caching
time zones and NLS, we will find two functions:
caph_cache_tzdata(3) and
caph_cache_catpages(3).

Another use of Capsicum helpers is to reduce
the amount of code needed in our application. If
we go back to Example 1, we can see we are limit-
ing stdout. The question is how many applica-
tions need to limit stdio—probably most of
them—which is why the
caph_limit_stdin(3),
caph_limit_stdout(3),
caph_limit_stderr(3) and
caph_limit_stdio(3) functions were intro-
duced. Those functions allow us to limit single
descriptors with the most common rights, and to
limit others with a
specific one for the
application. If the
default limitations
are enough for our
program, we can
simply call the

caph_limit_stdio(3) function which will limit
all of them in a single command.

Another very common pattern is calling the
cap_enter(2) function, and if the function fails,
then checking ERRNO. The purpose of this is to
check if entering capability mode failed because
something happened or if our operating systems
just don’t support it. In the first case, an application
should stop working at this point. In the second
case, it should still run because our whole system
doesn’t support it. At first, this check can be coun-
terintuitive, and it’s very uncommon to not check
ERRNO. This is why we are working on presenting
another function caph_enter(3) which will hide
this check [7].

Debugging Tools
When sandbox is added to an application, a devel-
oper cannot notice certain conditions of a program.
An application could use a library which a develop-
er doesn’t know very well. For example, if an appli-
cation is using a library and this library uses a ran-
dom number generator by opening /dev/random
if possible, otherwise it can use an insecure random
generator. If a developer does not notice this
behavior by analyzing the code, this can lead to
introducing new bugs while sandboxing an applica-

tion. This is why providing useful debugging tools
is one of the biggest challenges in building a sand-
boxing mechanism. For Capsicum in FreeBSD, we
have two tools:
• ktrace(1)/kdump(1),
• gdb with TRAPCAP.

During sandboxing, a developer can run a pro-
gram with ktrace(1) and check if no ECAPMODE
or ENOTCAPABLE has been returned. This might
cause some issues for a developer, as sometimes it
can be hard to know which called function failed.
It’s also very hard to cover all possible run paths.

In our previous example, this library function
which opens /dev/random is used with only one
particular option provided in the program.
However, a program has many options and it could
be very easy to miss. This is also why regression
tests are so important. Unfortunately, in this case
we would need to run a whole test suite under
ktrace(1) and analyze its output. In Example 2
below, we have a sample output of the
ktrace(1).

Another way of analyzing our program is to use
a new debugging feature for Capsicum which was
implemented by Konstantin Belousov under
FreeBSD Foundation sponsorship. Thanks to this,
when ECAPMODE or ENOTCAPABLE is returned, a
kernel will issue SIGTRAP. As a result, we will get
a core dump exactly at the moment the error
occurred. This makes it harder to overlook some
errors as our program will abort and we will notice
it while we run it. A core dump also provides more
information about the state of the process when
the error occurred. We can enable this feature
using sysctl kern.trap_enotcap (globally in
the system). If there is a need to enable it per-
process, we can use proctl(2). For a system to
be able to generate a core dump in capability
mode, we also need to set sysctl
capmode_coredump, otherwise programs in
sandbox are unable to create them.

Nvlist Library
We’ve already discussed some methods of obtain-
ing more capabilities in our process. One method is
to receive them from another process. To make it

802 random CALL cap_enter
802 random RET cap_enter 0
802 random CALL openat(AT_FDCWD,0x400877,0<O_RDONLY>)
802 random CAP restricted VFS lookup
802 random RET openat -1 errno 94 Not permitted in capability mode
802 random CALL exit(0)

Example 2. Result of a kdump(1) on a program that
enters capability mode and tries to open /dev/random.

22 FreeBSD Journal

easier to split programs between privileged and
unprivileged processes, Caspsicum developers also
introduced a very easy IPC library—nvlist. This
library is based on the list containing pairs (name,
value), and it allows us to keep many primitives
like: numbers, strings, binary and bools.

However, one of the most special things is that
it also allows us to keep descriptors on the list.
Furthermore, it provides functions to send and
receive nvlist over the socket. All of this has
been designed to allow for separation of process-
es and for capiscumizing them more easily.
nvlist as a container also exists in the kernel
and is used by some drivers (ex. ixl). The imple-
mentation used exactly the same code as user
land—it doesn’t contain primitives that don’t exist
in the kernel (like descriptor or socket). In Example
3, we can see a simple use of nvlist. The author

recommends considering nvlist as a candidate for
a serialization library because the implementation
and use of it is very straightforward. If you are inter-
ested in the use-cases of nvlist, see man page
(nv(9)) or some external materials [9] [10] [11].

Casper Overview
While splitting programs in the privileged and
unprivileged process, we will notice some com-
mon patterns. For example, many network tools
need to have access to the DNS server. In capabili-
ty mode, we can’t connect to the server directly
and need some other process that can talk with it.
To simplify this and reduce the amount of the
code needed for all applications, the Casper
library was created. This library provides us a set
of services like:

• system.dns - service for getting network host
entry

• system.grp - service for group database
operations

• system.pwd - service for password database
operations

• system.random - service for getting entropy
• system.sysctl - service for getting or setting

system information
• system.syslog - service for syslog

When creating a Casper instance, it forks from
the original process and this requires the creation
of Casper services (cap_init(3)) before enter-
ing capability mode. We can also receive a service
from another process which has a service. All serv-
ices are well documented, and in the man pages
we can find examples of how to use them.

Currently we are
working on one
more service—
system.fileargs.
The goal of this
service is to provide
a simple tool for
sandboxing applica-
tions, which, as an
argument, takes a
list of files. This
service will provides
descriptors via a
similar API to
open(2). Thanks
to the interface,
applying it should
be straightforward
for existing applica-
tions. Even though
this service is still

under development, the project agreed that it will
be initially treated as experimental [8]

We also have a plan to implement other servic-
es such as:
• system.login - a service for accessing the

login class capabilities database
• system.tls - a service for creating a safe

connection using TLS/SSL
• system.socket - a service for creating net-

work connections
• system.configuration - a service for

fetching unified configuration
These are all currently only ideas.

Casper and dhclient(8)
One of the new services is system.syslog.
Let’s discuss for a moment why we created it.

nvlist_t *nvl;

nvl = nvlist_create(0);
nvlist_add_string(nvl, "first", "foo");
nvlist_add_number(nvl, "second", 1234);

/*
* What is also very interesting in nvlist is that we need to check
* only last operation on nvlist. If one of previous adding would fail
* we would know that at any point.
*/

if(nvlist_send(sock,nvl)<0){,
fprintf(stderr, "Unable to send nvlist.\n");
exit(1);

}

Example 3. Simple use of the nvlist. Add two values and send it over the network.

May/June 2018 23

While booting an operating system with
kern.trap_enotcap sysctl enabled, we
noticed that dhclient(8) was core dumping. In
Example 4, we present this situation.

After analyzing this program, it turned out that
dhclient was using syslog to report its status. If
we look one more time at Example 4, we see that
the syslogd(8) was started after
dhclient(8). This is the standard problem of the
chicken and the egg. syslogd(8) sometimes
needs a network to be configured and
dhclient(8) needs a syslogd(8) to report
status. Historically, we decided to run
dhclient(8) before running syslogd(8).
What is worth noting is that dhclient(8) tried
to connect to syslogd(8) before entering capa-
bility mode because the server did not exist and yet
it failed. Surprisingly, each time the program was
not connected, a syslog function tried to connect to
it! Of course, because we are now running in
Capsicum, we will never be able to establish a con-
nection. So, to solve this issue, we decided to intro-
duce a new Casper service syslog. It tries to connect
to syslogd(8) and if it fails, it will try the next
time there is something to report. It’s also worth

noticing that the syslog API (shown in Example 5)
doesn’t report any issues if something is wrong.

Summary
Sandboxing base systems is an ongoing process.
We have introduced many tools which should lower
the entrance barrier for new people wishing to use
Capsicum.

Capsicumizing is a very good way to learn about
operating systems--how they work, how they inter-
act, and how some libraries behave. There are still
many small programs waiting to be capsicumized.
This can be a great lesson on operating systems--
especially for people who dream about becoming
FreeBSD developers. •

MARIUSZ ZABORSKI is a lead software develop-
er at Wheel Systems. He has been a proud
owner of the FreeBSD commit bit since 2015.
Mariusz's main areas of interest are OS security
and low-level programming. At Wheel Systems,
Mariusz leads a team that is developing the
most advanced solution to monitor, record and
control traffic in an IT infrastructure. In his free
time, he enjoys blogging (http://
oshogbo.vexillium.org).

Starting devd.
Starting dhclient.
pid 336 (dhclient), uid (65): Path `/var/crash/dhclient.65.0.core'
failed on initial open test, error = 2
pid 336 (dhclient), uid 65: exited on signal 5
Trace/BPT trap/etc/rc.d/dhclient: WARNING: failed to start dhclient
Starting syslogd.

Example 4. dhclient(8) core dumping during start.

void syslog(int priority, const char *message, ...);
void vsyslog(int priority, const char *message, va_list args);
void openlog(const char *ident, int logopt, int facility);
void closelog(void);
int setlogmask(int maskpri);

Example 5. syslog API

BIBL IOGRAPHY
[1] J. Anderson, A Comparison of Unix Sandboxing Techniques, FreeBSD Journal Sept/Oct 2017
[2] P.Dawidek, M.Zaborski, Sandboxing with Capsicum, ;login: issue:December 2014, Vol. 39, No. 6
[3] M.Zaborski, Capsicum and Casper - a fairy tale about solving security problems, AsiaBSDCon 2016

http://oshogbo.vexillium.org/pdf/AsiaBSDcon2016.pdf
[4] http://en.wikipedia.org/wiki/Namespace
[5] Robert N.M. Watson, Jonathan Anderson, Ben Laurie, Kris Kennaway, Introducing Capsicum: Practical Capabilities for UNIX, 2010
[6] FreeBSD wiki, Capsicum page, https://wiki.freebsd.org/Capsicum
[7] Introduce caph_enter(), FreeBSD phabricator, https://reviews.freebsd.org/D14557
[8] Introduce system.fileargs, FreeBSD phabricator, https://reviews.freebsd.org/D14407
[9] Introduction to nvlist part 1, http://oshogbo.vexillium.org/blog/42/
[10] Introduction to nvlist part 2 - dnvlist, http://oshogbo.vexillium.org/blog/43/
[11] Introduction to nvlist part 3 - simple traversing, http://oshogbo.vexillium.org/blog/45/

