
Let’s first describe some of the common terms used in NVMe. An NVMe SSD is referred to as an
NVMe controller and is roughly equivalent to a SCSI HBA or an AHCI controller. The primary differ-
ence is that for NVMe, the media resides within the controller itself – there is no separate protocol

nor cabling between the controller and its media. The storage media within the NVMe controller is
grouped into one or more NVMe namespaces. A namespace can be considered roughly equivalent to a
SCSI LUN. This combination of the HBA and media into one unit reduces the amount of overhead by
simplifying the protocol needed and eliminating layers of abstraction. The design uses the capabilities of
PCIe to eliminate driver bottlenecks by supporting lockless queueing of requests.

In FreeBSD, NVMe controllers and namespaces are enumerated and initialized through the nvme(4)
driver. nvme(4) is also responsible for providing an interface to expose these namespaces as block
devices, but does not register those namespaces with GEOM nor CAM directly. nvd(4) registers each
namespace with GEOM as a block device. Since NVMe has become mainstream since nvd(4) was orig-
inally developed, Netflix added nda(4) as an alternative to nvd(4). The nvd(4) driver is a very thin
layer on top of the NVMe protocol and is designed to operate at high transaction rates. The nda(4)
driver integrates with CAM, including its error recovery and advanced queueing. It also offers traffic
shaping to the drive via the I/O scheduler to improve overall performance.

NVMe System Integration
As you can see from this idealized picture,
nvd(4) integrates directly to the disk layer.
This has the advantage of queueing the com-
mands to the NVMe drive with as little delay as
possible. Since NVMe drives are designed to
scale, this works out fairly well. The minimal
delay in getting I/O to the drive translates to a
lower latency and simpler code path.

In contrast, the nda(4) driver connects
through CAM. CAM schedules the I/O to the

36 FreeBSD Journal

FreeBSD and

NVM EXPRESS
NVM Express (NVMe) has quickly become the predominant standard for
high-performance, non-volatile memory access across PCI Express. FreeBSD
added support for NVMe in 2012, enabling FreeBSD to take advantage of
devices that can deliver over 500,000 IO/s per NVMe device1. Companies
like Netflix have rapidly moved to deploying NVMe storage on FreeBSD, such
that FreeBSD's NVMe subsystem is now helping drive a significant portion of
North American internet traffic2. In this article, we describe the NVMe specifi-
cation and FreeBSD's implementation of the specification and provide an
overview of FreeBSD's utilities for monitoring and managing NVMe storage.

By Jim Harris and Warner Losh

User Space
System Calls
File System

Buffer Cache
GEOM

Disk Interface
nda

nvd CAM
nvme_sim

S E E
T E X T
O N L Y

July/August 2018 37

drive. This can involve reordering commands at times. The CAM system is designed to accept a high queue
rate as to have the queued I/O sent to the drive as the I/O is available for it. CAM also adds error handling
which can help recover drives when things go wrong better than nvd(4) (which has little error recovery in
its error path). nda(4) can also shape I/O traffic to the drive, to a limited extent, through the CAM I/O
scheduler. This can be utilized to introduce some unfairness to produce better results. For example, video
streaming benefits from a bias towards read operations. Many NVMe drives have trouble with TRIMs but will
soon be able to heavily throttle or shape the trims to the drive. nda(4) is able to collapse multiple trims
into one trim request for the drive.

The nvme(4) driver is responsible for enumerating the nvme drives and their namespaces when the driv-
er is attached. The nvd(4) or nda(4) drivers register interest in these (and other) events with the
nvme_register_consumer() call at startup. So, when it detects a new namespace, it calls the new
namespace callback. For the nvd(4) driver, a new disk interface is created and registered with GEOM. With
the nda(4) driver, the callback goes to nvme_sim which creates the appropriate CAM devices that cause
nda(4) to be created (CAM’s SCSI legacy means that it does many things via indirection or deferred call-
back). The nda(4) driver then creates the disk and registers it with GEOM.

Regardless of the disk interface, when requests come from the upper layers of the system (specifically from
the disk layer via command structures called bios), the nvd or nda will convert the BIO_READ, BIO_WRITE
and BIO_DELETE commands into the appropriate nvme command and pass those requests to the nvme(4)
driver for execution.

Exposing NVMe namespaces via nvd(4) versus nda(4) is controlled by the hw.nvme.use_nvd tun-
able. It currently defaults to 1, meaning namespaces are exposed via nvd(4).

NVMe Commands and Queue Pairs
NVMe commands such as READ, WRITE and IDENTIFY are submitted by the host to the controller via sub-
mission queues, with the controller notifying the host about completions of those commands via completion
queues. The specification allows for multiple submission queues to share one completion queue, but
FreeBSD always associates one submission queue with one completion queue to form a logical queue pair or
“qpair”. These qpair associations are critical for unlocking NVMe parallelism on many-core systems and will
be described later in this article.

Submission queues are a contiguous host memory region acting as a circular buffer. Each submission queue
entry is 64 bytes. The host notifies the controller of new commands by filling out the next entry in the queue
and then writing to a per-queue doorbell in the controller’s MMIO register space. In nvme(4), this is done in
nvme_qpair_submit_tracker():

Completion
queues are a sepa-
rate contiguous host
memory region with
16-byte entries. The
controller notifies
the host about com-
pletions by filling
out the next entry in
the completion
queue. This entry
contains both the sub-
mission queue’s ID and the per-queue command ID that the host used when submitting the command. The
controller then interrupts the host and the driver can start processing completion entries. NVMe defines a
phase bit in each completion queue entry to enable the host to determine which completion entries are
valid. The controller will write this phase bit to 1 the first time through the queue, and then alternating
between 0 and 1 through subsequent passes through the queue. The driver checks each completion queue
entry’s phase bit against the expected value to determine which entries contain new completions. In
nvme(4), this is done in nvme_qpair_process_completions():

696 /* Copy the command from the tracker to the submission queue. */
697 memcpy(&qpair->cmd[qpair->sq_tail], &req->cmd, sizeof(req->cmd));
698
699 if (++qpair->sq_tail == qpair->num_entries)
700 qpair->sq_tail = 0;
701
702 wmb();
703 nvme_mmio_write_4(qpair->ctrlr, doorbell[qpair->id].sq_tdbl,
704 qpair->sq_tail);

This method of completion queue processing enables the host to only read memory to determine which
commands have been completed. This ensures there are no MMIO reads in the performance code path. It
also takes advantage of CPU features such as Intel®’s Data Direct I/O Technology3 to place completion
entries directly in last-level cache to optimize completion entry processing.

NVMe commands are further divided into two types – admin and I/O – which are handled by two differ-
ent types of qpairs – also named admin and I/O. The queue processing described earlier applies identically
to both admin and I/O qpairs, but the method of initializing them is quite different. Walking through how
an NVMe controller is initialized will help with this understanding.

NVMe Controller Initialization
At a high level, controller initialization is split into two stages:
Controller reset – this stage is performed by the host using NVMe MMIO register reads and writes. Its pri-
mary functions are describing the parameters of the admin qpair (host memory addresses and queue sizes)
and then toggling an enable bit (CC.EN). After the enable bit is toggled, the controller will start its internal
initialization and set its ready bit (CSTS.RDY) when it is completed. The host waits for the ready bit to
become set before proceeding to the next stage.
Controller setup – this stage is performed by the host using admin commands which can now be submit-
ted on the admin qpair that was setup in the previous stage.
• Submit an IDENTIFY command with command dword 10 (CDW10) set to 1. This signifies the controller

to return the IDENTIFY data associated with the controller.
• Submit CREATE_IO_CQ and CREATE_IO_SQ commands to construct I/O qpairs. The number of I/O

qpairs allocated typically equals the minimum of the number of CPU cores on the system and the maxi-
mum number of I/O qpairs supported by the controller. This will be described in more detail later in
this article.

• Submit an IDENTIFY command for each namespace reported by the controller’s
IDENTIFY data. The key piece of data in the namespace’s IDENTIFY data is the size and format of the
namespace. The namespace is specified in the IDENTIFY command using the NSID field which always
starts at 1 (there is never a namespace 0)!

I/O Queue Allocation
I/O qpair allocation is a key feature of the nvme(4) driver. With many I/O qpairs at our disposal, we can ideally
allocate a separate qpair per CPU core. This enables threads on each CPU core to submit I/O commands without
synchronization with threads running on other CPU cores. It also enables binding completion interrupts to the
CPU core where the I/O was submitted to improve cache locality.

Practically, there are a couple of reasons why a per-core qpair may not be possible. First, while the
NVMe specifications allow for up to 65,535 I/O qpairs per controller, most NVMe SSDs allow far fewer I/O
qpairs – sometimes fewer than 32. Second, there may be a limited number of interrupt vectors available on
the system. This latter limitation was exposed most frequently on systems with many NVMe SSDs and
multi-queue NICs but should now be much less likely to occur thanks to some SMP improvements that are
now in FreeBSD 11.4

For cases where a qpair cannot be allocated per CPU core, nvme(4) will allocate as many qpairs as it can,
and then associate each qpair with multiple CPU cores. A mutex is used to synchronize access to the qpair – not
only between different threads submitting I/O, but also with the qpair’s completion handler.

I/O Submission
An NVMe command primarily consists of the following and is represented by FreeBSD’s struct
nvme_command found in /usr/include/dev/nvme/nvme.h:

38 FreeBSD Journal

c o n t i n u e d

424 while (1) {
425 cpl = &qpair->cpl[qpair->cq_head];
426
427 if (cpl->status.p != qpair->phase)
428 break;
429

July/August 2018 39

• An 8-bit opcode – admin and I/O opcodes overlap but are easily differentiated based on its submission
queue type

• A 16-bit command ID – this command ID must be unique among any other commands submitted on the
same queue

• Namespace identifier – primarily used for I/O commands, but some admin commands such as IDENTIFY
also use this field; note that this infers any I/O queue and submit I/O to any namespace

• Two Physical Region Page (PRP) entries

PRP is NVMe’s version of scatter-gather lists (SGL). Instead of scatter-gather elements which typically speci-
fy a start address and length, PRP entries only specify a start address. The length is inferred by the distance of
the start address from the next page, and the overall size of the I/O command. It also has limitations such as
all PRP entries except the first must start on a 4KiB boundary, and all entries except the first and last must
describe exactly a 4KiB length buffer. Fortunately, these limitations do not affect FreeBSD, since the FreeBSD
I/O stack always uses virtually contiguous buffers which can always be represented by PRP.

An astute reader will notice that an NVMe command only has two PRP entries – so how do we represent the
I/O buffers for large commands? In these cases, the second PRP entry points to a list of other PRP entries. But
this means that for large I/O, we need buffers for the PRP lists that are mapped for DMA.

nvme_request and nvme_tracker
There are two considerations for PRP lists:
• PRP list buffers need to be mapped for DMA, so PRP list buffers are allocated and mapped when the

qpair is allocated. This avoids mapping the PRP list in the performance path.
• PRP list buffers can become large in certain environments. The size of a PRP list buffer is proportional to

MAXPHYS. FreeBSD’s default MAXPHYS is 128KiB which results in a maximum PRP list of 256 bytes. Netflix
however deploys with MAXPHYS of 1MiB which results in 2KiB PRP list buffer size. So, we need to be jud-i
cious in how many PRP lists are allocated per qpair. The nvme driver automatically limits the request size to
the smaller of MAXPHYS and 2MiB, the largest buffer that fits in the two PRPs pages available for the SG list.
nvme(4) defines two different structures – struct nvme_request and struct nvme_tracker.

When an I/O qpair is allocated, 1285 nvme_trackers are allocated, along with a PRP list buffer for each
nvme_tracker. This represents the maximum number of I/O that can be outstanding on the qpair at any
given time.

struct nvme_request represents a command that has been requested by the caller. The simplest case is
nvme_ns_cmd_read():

Here the caller is requesting to read data from the namespace into the buffer “payload”. First,
nvme_allocate_request_vaddr() allocates an nvme_request structure with the parameters
specified by the caller. Next, the nvme_command structure is populated by nvme_ns_read_cmd().
Note that nvme_command is a 64-byte submission queue entry, but at this point we are only preparing the

32 int
33 nvme_ns_cmd_read(struct nvme_namespace *ns, void *payload, uint64_t lba,
34 uint32_t lba_count, nvme_cb_fn_t cb_fn, void *cb_arg)
35 {
36 struct nvme_request *req;
37
38 req = nvme_allocate_request_vaddr(payload,
39 lba_count*nvme_ns_get_sector_size(ns), cb_fn, cb_arg);
40
41 if (req == NULL)
42 return (ENOMEM);
43
44 nvme_ns_read_cmd(&req->cmd, ns->id, lba, lba_count);
45
46 nvme_ctrlr_submit_io_request(ns->ctrlr, req);
47
48 return (0);
49 }

•

40 FreeBSD Journal

submission queue entry – it will get copied later into the actual submission queue. Finally, we call
nvme_ctrlr_submit_io_request().

Here is where we pick the qpair based on the current CPU. Now that we know which qpair to use, we
call nvme_qpair_submit_request(). This function checks if there are any available nvme_track-
ers. If there are, it calls nvme_qpair_submit_tracker() which we saw earlier. If not, it puts the
nvme_request in an STAILQ. Later, once some I/O are completed, this STAILQ will be checked and
nvme_requests are resubmitted.

NVMe Namespaces
The NVMe specification allows the logical partitioning of drives into individual namespaces. A namespace is
nothing more than a collection of blocks, addressed 0..N-1. These namespaces may be fully provisioned or
thinly provisioned (and in fact, hardware or hypervisors that emulate NVMe drives often hide these details
from the host). Namespaces also provide ways to independently assign attributes to those namespaces.
One namespace may be used to store the OS. The data rarely changes, usually has few writes, but a lot of
reads. Another namespace may contain a transaction log which is read infrequently but written in a mostly
append I/O pattern. Still another may contain data that’s rewritten all the time and very hot. The firmware
on the NVMe drive can use these attributes to optimize NAND storage. For cold data, like the OS, the
firmware may place it into cells that have low wear and are storing 3 bits per cell to maximize data density.
These cells often have excellent long-term retention. For very hot data, the drive may choose to use cells
that are more worn and may store a lot of it in 1-bit-per-cell to maximize speed. While the worn cells can-
not retain data as long, they are idea for hot data because the data won’t be stored for long anyway, so
any deficiency in longevity will not hinder the drive’s performance.

FreeBSD does not yet support namespace management – for example, creating and deleting name-
spaces and specifying attributes for those namespaces. There is active work in this area within the FreeBSD
community however and should make it in time for FreeBSD 12.

Managing NVMe Drives
The primary utility for listing and configuring NVMe controllers and namespaces is nvmecontrol(8). The
most basic nvmecontrol subcommand is “nvmecontrol devlist” which provides a brief summary
of the each NVMe controller and its namespace(s).

%sudo nvmecontrol devlist
nvme0: ORCL-VBOX-NVME-VER12
nvme0ns1 (1024MB)

Additional nvmecontrol(8) subcommands include:
• “nvmecontrol identify” for providing details on NVMe controllers and namespaces based on

information from the NVMe IDENTIFY command
• “nvmecontrol logpage” for reading log pages from an NVMe controller; specification-defined log

pages for Errors, Health/SMART, and Firmware Slots have handlers to translate the log page into a
human-readable format

• “nvmecontrol firmware” for downloading and/or activating different firmware images on an
NVMe controller

• “nvmecontrol perftest” for running a low-level performance test from the nvme(4) driver itself

1207 void
1208 nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
1209 struct nvme_request *req)
1210 {
1211 struct nvme_qpair *qpair;
1212
1213 qpair = &ctrlr->ioq[curcpu / ctrlr->num_cpus_per_ioq];
1214 nvme_qpair_submit_request(qpair, req);
1215 }

Go to www.freebsdfoundation.org
1 yr. $19.99/Single copies $6.99 ea.

SUBSCRIBE TO DAY
J O U R N A L

AVAILABLE AT YOUR FAVORITE APP STORE NOW

TM®

July/August 2018 41

• “nvmecontrol reset” to issue a controller-level reset to an NVMe controller
• “nvmecontrol power” to change the power state or specify a workload hint for an NVMe controller
• “nvmecontrol wdc” to perform options specific to WDC NVMe SSDs
camcontrol(8) can currently be used to list namespaces when nda(4) is in use, but other function-
ality such as NVMe identify or firmware download are not yet plumbed.

One shortcoming of nvmecontrol(8) is mapping an NVMe controller or namespace to its associated
nvd or nda entry. The best way to do this currently is associating serial numbers between “geom disk
list” and “nvmecontrol identify”.As camcontrol(8) gains more NVMe functionality, this issue will
be mitigated.

Summary
NVM Express provides a modern, high performance storage interface well suited to today’s CPU architec-
tures – and FreeBSD is well-positioned to take advantage of it. Integrating NVMe support with CAM, as well
as future support for namespace management and NVMe SSD hotplug will further improve on FreeBSD’s
NVMe capabilities. Next time you watch Netflix, you will hopefully know a little bit more about how those
bits ended up on your screen! •

1https://www.intel.com/content/www/us/en/solid-state-drives/optane-ssd-900p-brief.html
2https://www.sandvine.com/hubfs/downloads/archive/2016-global-internet-phenomena-report-latin-america-and-north-america.pdf
3https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
4https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=199321
5128 is the default. This number can be modified with the hw.nvme.io_trackers tunable.

Jim Harris is a Principal Software Engineer in
Intel’s Data Center Group and was granted his
FreeBSD source commit bit in 2011. He is the
original author of the FreeBSD nvme and nvd
drivers as well as the nvmecontrol management
utility. Jim has also helped bring libraries and
tools such as DPDK and Intel VTune Amplifier to
FreeBSD and ported the FreeBSD nvme driver to
userspace as part of his current role as Storage
Performance Development Kit software architect.

Warner Losh is a Senior Software Engineer at
Netflix, where he optimizes FreeBSD's storage sys-
tem for video delivery servers. He has been a
FreeBSD contributor for over 20 years and is cur-
rently serving his sixth term on the FreeBSD core
team. Warner has improved a number of sys-
tems—most recently the boot loader—in FreeBSD.
Prior to Netflix, he produced flash drives and
measured atomic clocks for accuracy. His code
still measures some of the clocks that create UTC!

