SEE
TEXT

ONLY RE—

FreeBS'ECIENTIFIC COMPUTING

e o_/e

ver the years, I've watched barriers to
O FreeBSD use fall one by one. Open-source

software continues to spread like the Blob,
filling in niches once held exclusively by commercial
and other closed-source software.
OpenOffice/LibreOffice, OpenJDK, Clang, Flang,
and many other high-quality open-source products
have made it possible for most people to do every-
thing they need on FreeBSD with ease. The few
remaining limitations of what can be run on
FreeBSD have become increasingly esoteric and
they, too, seem destined to disappear in time.

My need to run MS Windows for personal use
came to an end more than a decade ago, although
| still support it to some extent for work. Mac OS X
has filled the few remaining needs that had been
served by Windows, but even my Mac has now
been reduced to a once-per-year platform for run-
ning tax software. | could, of course, use FreeBSD
for this as well with a web-based tax program, if
not for the reality of computer security in the
cloud. The bottom line is that | now find FreeBSD
easier and more pleasant to use than commercial
operating systems for most of my work and per-
sonal computing.

Most of my professional work since late 1999
has been in support of scientific computing. From
1999 until 2008, | supported fMRI brain-mapping
research for a multidisciplinary group including neu-

4 FreeBSD Journal

i;;: By Jason Bacon

I've been running both FreeBSD and Linux

different Linux distributions over the years, most
recently focusing on CentOS. | also have significant
experience with Mac OS X and NetBSD and have
experimented with many other BSD platforms. As a
staunch agnostic with a firm belief in the value of
open standards, | like to remain familiar with all the
options in the POSIX world so I'm always prepared
to choose the best tool for the job.

rologists, neuropsychologists, cell biologists, psychia-
trists, and biophysicists. During most of this time, |
was the sole IT support person for several labs,
peaking at over 60 researchers. | was responsible for
maintaining many Unix workstations as well as
managing all the research software needed for fMRI
analysis. The need for a full-featured and extremely
reliable operating system became very clear, very
quickly. FreeBSD answered that call and made it
possible for me to single-handedly keep this impor-
tant research moving forward for many years.

Since 2009, | have been supporting a wide range
of research, including engineering, bioinformatics,
physics, math, chemistry, public health, business,
and psychology. A major part of this environment
has been our HPC clusters running CentOS Linux.
FreeBSD has also played an important role as a
development and testing platform, and the primary
OS on our educational HPC cluster and HTCondor
grid. It has also provided the model for how we
manage most open-source software on our CentOS
systems, using pkgsrc, a cross-platform package
manager from the NetBSD project, originally derived
from FreeBSD ports.

Already an Important Part of HPC

FreeBSD already plays crucial roles in research,
including many high-performance computing
(HPC) environments, although some may not rec-



ognize it by name. FreeBSD is the foundation of
some of the most popular high-performance storage
appliances such as FreeNAS, Isilon, NetApp, and
Panasas. FreeBSD is also an important component of
Juniper network switches, pfSense firewalls, Apple’s
OS X, and runs servers for many web-hosting and
cloud services. FreeBSD enjoys strong support from
other vendors as well, including Mellanox, which is
currently developing FreeBSD drivers for their net-
work adapters.

Outside scientific research, FreeBSD is used by
some of the biggest players in the business, who
need to maximize performance and reliability. Ever
watch a movie on Netflix? If so, you're a FreeBSD
user. The Netflix servers streaming movies to your TV
or computer run FreeBSD. FreeBSD has also been
used for Yahoo! servers for decades. For a current
list of notable companies using FreeBSD, see the
FreeBSD Handbook (https://www.freebsd.org/
doc/en_US.ISO8859-1/books/handbook/
nutshell.html#introduction-nutshell-users).

FreeBSD as a Computing Platform

Scientific computing has reached a sort of utopia in
recent years due to fast, cheap hardware and full-
featured, free software. For a typical workstation or
laptop, it's hard for a scientist to go wrong. There
are multiple free operating systems to choose from,
mostly based on BSD, Linux, and Solaris. Any one of
them will serve the needs of a typical scientist quite
well. There are POSIX compatibility layers for MS
Windows such as Cygwin and Windows Subsystem
for Linux (WSL), which facilitate running Unix soft-
ware directly on Windows, and free virtual machines,
such as VirtualBox and gemu, that allow us to run
multiple operating systems at the same time on the
same machine.

Unsurpassed Reliability

But what about those of us who manage many
multi-user servers for research? There has always
been, and always will be, a severe shortage of skilled
systems managers. Nowhere is this shortage felt
more painfully than in scientific research. The law of
supply and demand dictates that experienced sys-
tems managers are expensive. Scientific researchers
make their living by repeatedly begging for grant
money to keep their labs running. With few excep-
tions, most researchers have too little funding and
cannot hope to compete with wealthy corporations
for the limited IT talent pool. In fact, most principle
investigators in academic research earn far less than
an experienced Unix sysadmin.

In this scenario, choosing a system that minimizes
IT man-hours is crucial. We must enable a small IT

staff to be as productive as possible, by avoiding sys-
tem outages and performing common tasks such as
software deployment as quickly and cleanly as possi-
ble. This is where FreeBSD stands out among its
peers. FreeBSD's unsurpassed reliability and ease of
management save precious IT man-hours that could
be used for more creative endeavors. It can literally
reduce the need for man-hours by an order of mag-
nitude over the methods often used by inexperi-
enced sysadmins in the research community.

Experienced systems managers in this situation
know to stay away from bleeding-edge operating
systems, which are likely to bring repeated surprises
that will distract them from more creative work. For
this reason, the vast majority of large HPC clusters
run Enterprise Linux rather than other distributions
with the latest kernel, compilers, and other system
software. This is not a criticism of bleeding-edge
platforms. In fact, it's important to all of us that
many typical users use them and work the bugs out
of the latest new kernel features, compilers, etc.
Today's bleeding-edge is tomorrow’s Enterprise.

Enterprise Linux systems achieve a high level of
reliability and long-term binary compatibility by tak-
ing a snapshot of a recent bleeding-edge system and
declaring a moratorium on major upgrades. For
example, Redhat Enterprise and CentOS are based
on a snapshot of Fedora. The down side of this
approach is that the tools and libraries that ship with
it are outdated and unable to support the latest open-
source scientific software. For example, Redhat
Enterprise 7, the latest release as of this writing, ships
with GCC 4.8.5 (June 2015) and GNU libc 2.17. The
latest releases are GCC 8.1 and libc 2.27. The only
way to build the latest open source on such a system
is by installing newer core tools and libraries.
Replacing them outright would sacrifice the stability
and binary compatibility with commercial software for
which Enterprise Linux is designed. The solution we
employ on our CentOS systems is to leave all these
core tools in-place and use pkgsrc, a cross-platform
package manager, to install newer tools alongside
them. Many others have resorted to using containers
or virtual machines to provide a more modern envi-
ronment, isolated from the outdated Enterprise base.

FreeBSD allows us to avoid these issues by offer-
ing stability matching or exceeding that of Enterprise
Linux while providing more modern tools in the
base. As of this writing, FreeBSD 11.2 and the
upcoming FreeBSD 12 release both provide clang 6
(March, 2018) as a base compiler and easily support
most current open-source scientific software.

Minimize Management Time

A FreeBSD system can be installed from scratch
in about 5 minutes and fully configured for many

July/August 2018

5



purposes in less than an hour, thanks to well-
designed tools in the base system and the FreeBSD
ports system for managing add-on packages (more
on this later). The FreeBSD handbook is a well-writ-
ten and excellent tutorial for most common tasks
and is kept fairly up-to-date. No need to search the
web and risk following outdated or erroneous
instructions.

Ongoing maintenance is quick and easy using
freebsd-update, a binary update system for installing
bug fixes and security patches in the base system.
Unlike many other operating systems, FreeBSD secu-
rity notices include clear instructions on how to apply
patches, including when a reboot or service restart is
required.

Software Management with
FreeBSD Ports

To go from idea to a published paper in scientific
computing involves four steps:

1. Develop the software
2. Deploy the software
3. Learn the software
4. Run the software

Steps 1 and 3 are mostly platform-independent.
Unfortunately, step 2, software deployment, is often
one of the major bottlenecks in scientific computing.
Step 4, running the software, is a lesser, but real bot-
tleneck requiring the ability to deploy an optimized
build of the software. FreeBSD ports has the poten-
tial to easily eliminate these bottlenecks, as it allows
the user to easily install from a huge collection of
binary packages and just as easily install any package
from source with additional compiler options.
FreeBSD also has strong support for OpenMP,
pthreads, and MPI, for cases where parallel comput-
ing is needed to reduce run times.

The vast majority of scientific software is open
source, developed on a variety of (usually bleeding-
edge) platforms, and often deployed via very primi-
tive methods. Many developers don't target package
managers at all, but instead provide precompiled
binaries for their own development platform and
maybe a few others, alongside cryptic instructions
for performing a “caveman” install, manually build-
ing from source after installing dependencies, or
worse, using their bundled dependency software.
The chances of their build-from-source instructions
working for the average user are almost nil.

Part of the problem is that the developers are
mostly scientists with little or no computer science
training, very often self-taught graduate students
developing software for their dissertation. They don't
know much about sustainable development and sys-
tems management practices. If their software lives
beyond their graduation date, it will likely get

FreeBSD Journal

cleaned up so that it's more portable and easier to
deploy. However, given the constant, rapid progress
of science and the rotating door of student-develop-
ers, the research computing community is basically
doomed forever to a world full of nascent, disorgan-
ized code.

The FreeBSD ports system can alleviate this prob-
lem in two ways:

FreeBSD ports has one of the largest collections of
existing packages of any package manager. At the
time of this writing, FreeBSD users can install any of
more than 32,000 packages with one simple com-
mand. If the package you need is not already in the
collection, chances are that most or all the dependen-
cies are there, so the effort needed to create a new
FreeBSD port is often a small fraction of that required
to do a caveman install. Note also that FreeBSD's port
options substantially increase the number of possible
software installations. This has to be considered when
comparing the ~32,000 FreeBSD ports against the
number of binary packages in systems that do not
support convenient builds from source. Many of the
binary packages in such systems are merely different
builds of the same software.

Imagine a scenario where instead of thousands of
scientists each wasting forty hours struggling with
the same caveman installation, one of them creates a
FreeBSD port and everyone else in the world from
that day on can install the software in seconds.
That's many thousands of man-hours redirected from
senseless, duplicated IT effort to productive scientific
exploration. This is the potential of FreeBSD ports
and other package managers.

There is another important difference between
binary package managers, which quickly install pre-
compiled packages along with dependencies, and
package managers that make it convenient to build
from source, such as FreeBSD ports, Gentoo Portage,
MacPorts, and pkgsrc. Binary packages install much
faster, of course, but they may suffer from compati-
bility, security, and performance problems. To be
portable, they must be compiled with static libraries
and limited to common CPU features, which pre-
cludes utilizing new instructions and other CPU fea-
tures that may significantly improve performance. In
extreme cases, you may see a 30% improvement in
speed from a non-portable binary utilizing all avail-
able CPU features. This can save thousands of core-
hours on an HPC cluster running a large analysis.

With FreeBSD ports, building an optimized binary
from the source code, utilizing the best features of
your CPU, is as easy as installing the binary package.
It will take longer for the computer to build and
install, of course, but the effort for you is about the
same. To install a portable (possibly slow) binary
package, we might use the following:

pkg install canu



To build an optimized version from source, we
would adjust our build settings in /etc/make.conf
(e.g. by adding CXXFLAGS+=-march=native), and
run the following:

cd /usr/ports/biology/canu
make install

If a FreeBSD port does not already exist for the
software you need, consider creating one. It's not as
difficult as one might assume. There is a rather steep
learning curve to becoming a FreeBSD ports commit-
ter, who can add ports to the system only after
extensive quality control measures.

However, ports need not be committed before

you can use the ports system to deploy them. In fact,

all ports are deployed and tested before being com-
mitted. The learning curve for creating a basically
functional port or upgrading an existing port is fairly
small. Anyone who knows how to write a Makefile
and use the build system employed by the upstream
developers can learn to do this fairly quickly. The
Porter's Handbook (https://www.freebsd.org/doc/
en_US.ISO8859-1/books/porters-handbook/) covers
most of what you would need to know, starting
from the beginner level all the way to becoming a
FreeBSD committer.

If you install binary packages from the FreeBSD
ports system, they can quickly and easily be updated
using the following command:

pkg upgrade

(Note that this may replace your optimized from-
source install with a newer binary package, so
watch for this and rebuild the port from source
after the pkg upgrade if necessary.)

The port frameworks used to build from source
can also be easily updated using portsnap or svn.
This is a great feature for those who want to keep
their systems running the latest of everything. But
what if you need to keep the same version of a pro-
gram running through a long-term study spanning
several months or even years? Running pkg upgrade
could effectively break your study.

It is possible, though not well-tested at this stage, to
deploy multiple ports trees under different prefixes.
Ports can also be installed this way without root privi-
leges. The FreeBSD ports project branches snapshots
every three months under different prefixes. The ports
in these quarterly snapshots are never upgraded,
although they may receive bug and security patches.

| have been experimenting with deploying quarterly
snapshots under prefixes such as /sharedapps/
ports-2018Q1, with corresponding installation to
/sharedapps/local-2018Q1. Software can be
installed statically here and never upgraded, while
other software installed to the standard prefix is
upgraded regularly with pkg upgrade.

RootBSD

Part of the NetActuate family.

Leverage Our Global Footprint of
32 Locations Worldwide

v Deploy FreeBSD instantly via our web portal
+ Cloud servers and colocation in all major global markets
v Customized, dedicated bare metal available

v Full root access

v/ 24x7 friendly support from FreeBSD experts on staff

Request a quote and learn more today at

netactuate.com

July/August 2018




This system follows a better-supported feature of the
pkgsrc package manager, which is designed to be
bootstrapped on any POSIX platform under any prefix
the user desires. We have been using pkgsrc this way
on our CentOS systems for years.

We could also use pkgsrc this way on FreeBSD,
but there is a strong motivation to use the FreeBSD
ports in a similar fashion, mainly because it has a
larger collection than pkgsrc at this time. Some work
remains to be done to utilize FreeBSD ports this way,
but the basic support for this sort of deployment
already exists. We just need to put it into use and
iron out the wrinkles.

Base Features Beneficial to Science

There is a strong interest in the advanced ZFS filesys-
tem in the scientific community. Its performance, flexi-
bility, and data protection features are very attractive
to users who invest immense amounts of time and
money generating files containing their research
results.

FreeBSD's RootOnZFS features allow us to deploy
a FreeBSD installation booting from a ZFS filesystem
using a simple menu interface in the installer. Any
modern PC with multiple disks can be up and run-
ning with FreeBSD on a RAIDZ array in a matter of
minutes.

ZFS is not suited for every purpose, however. ZFS
is rather memory-hungry. On an HPC compute node,
where local disks are used only to house the operat-
ing system and provide temporary storage, we may
not want ZFS competing for memory resources with
the computational processes. The same reasoning
would apply to any other machine devoted mainly
to CPU- or memory-bound tasks. Fortunately,
FreeBSD's UFS2 filesystem also provides solid per-
formance and reliability, with a very low memory
footprint.

FreeBSD provides enterprise reliability and easy
management, but what about that other big advan-
tage of Enterprise Linux, support for commercial soft-
ware products? Fortunately, FreeBSD’s Linux compati-
bility module allows us to run most Linux binaries,
with no performance penalty, trivial memory overhead,
and a very modest amount of disk space and effort.
FreeBSD's Linux compatibility is often erroneously
referred to as emulation or a compatibility fayer.

In reality, it is neither. The basis of FreeBSD’s Linux
compatibility is a kernel module that directly sup-
ports Linux system calls. The module activates an
alternative function pointer table to directly invoke
Linux-compatible kernel functions when a Linux
binary is being run.

To complete the Linux-compatible environment, we
simply need to install the Linux versions of any shared
libraries and tools required by Linux programs, the
same as we would on a real Linux system. The

FreeBSD Journal

FreeBSD ports system provides tools for easily
installing RPMs used by the RHEL/CentOS Yum pack-
age manager. Creating a FreeBSD port that installs
software from the CentQOS Yum repositories is trivial
in most cases, and many such ports you might need
already exist.

FreeBSD's Linux compatibility is fairly robust and
capable of running the vast majority of commercial
Linux binaries. | have personally run many versions
of Linux Matlab on FreeBSD machines, with full
functionality, including the Java desktop and MEX
compilation system (using Linux GCC compilers).

At this point, though, | would advise most
FreeBSD users to run Octave, a full-featured, open-
source Matlab-compatible suite. It's virtually identical
to Matlab for most typical users, it's free, and can be
installed in seconds.

There is, of course, some additional work required
to run Linux binaries on FreeBSD. Running some-
thing as complex as Matlab or ANSYS may require a
fair amount of effort. Simpler applications such as
shared-memory LS-DYNA are trivial to install. Linux
binaries depending on MPI (Message Passing
Interface) for distributed parallel computing could
also be a challenge. If you rely heavily on complex
closed-source Linux applications, you may be better
off running an Enterprise Linux system.

In order for FreeBSD to become a competitive
platform in HPC, it would also need to more easily
support a few other subsystems that currently only
work well on Linux, such as nVidia's CUDA GPU
platform (although the open standard OpenCL is
beginning to gain traction) and Infiniband intercon-
nects that are commonly used for distributed parallel
computing.

There are a few remaining features that are likely
to ensure the dominance of Enterprise Linux in HPC
for a while.

As it stands, though, FreeBSD is already an excel-
lent platform for the needs of most typical scientific
computing. If you mainly run open source software
and prefer to spend your time doing science rather
than IT maintenance, FreeBSD will serve you well. @

The lead sysadmin for research computing at the
University of Wisconsin-Milwaukee, Jason Bacon has
been working with computers since 1983, and with
FreeBSD and Linux since 1995. He is the author of
The C/Unix Programmer's Guide, a comprehen-
sive guide for beginning to intermediate C/C++
programming under UNIX, Linux, Macintosh OS X,
and similar systems. He is proficient in Spanish and
German, with a working knowledge of French and
Mandarin. When he isn't inside working on various
systems, he can often be found outside, cycling,
sea kayaking, cross-country skiing, hiking, and
scuba diving.



