ling oo

1424 (10001
1424 (1000125
1924 (10001)
1424 (1000ky)
1424 (1000ky)
1604 (1000145
1604 (1000i4)
1604 (100012)
1604 (1000k)

30

SEE
TEXT

igh-performance computing encompasses a
|—| variety of fields and domains, from science

and engineering to finance and social stud-
ies. The common denominator is the practice of
aggregating computing power in a way that deliv-
ers much higher performance than one could get
from a typical desktop computer or workstation to
solve large problems [1]. More concrete examples
include, in order of descending compute share on
civil installations: materials design, drug discovery,
climate modeling, materials design, computational
fluid dynamics, economic simulations, and big data
analysis.

Arguably, we are living in a consolidated HPC
world in terms of operating system and microarchi-
tectures employed, and on a cursory glance, con-
temporary HPC installations look very much alike.
A typical installation will feature a Beowulf cluster
build from thousands of nodes connected by a fast
interconnect. As of this writing, the TOP500 list of
the fastest supercomputers in the world contains
91.5% amd64 processors and 99.6% Linux operat-
ing systems (OSs) [3].

So where is the space for FreeBSD in this mono-
culture and why should the FreeBSD community
care about HPC? First, HPC continues to be both

FreeBSD Journal

By Johannes M. Dieterich

the source of important basic technologies widely
used in more general computing and a cauldron of
innovative technologies, e.g., basic numerical
libraries and more recently deep-learning applica-
tions. Second, a more in-depth view would reveal a
much more complex ecosystem also containing
communication and the aforementioned numerical
libraries, toolchains, and programming languages,
as well as auxiliary hardware solutions like network
switches and storage. Lastly, there are plenty of
systems, such as developer workstations, that are
more diverse, have different capability require-
ments, and are more accessible to OS alternatives;
e.g., Ubuntu Linux is a prime choice for developer
workstations, not so much for cluster installations.

38.93% materials science

15.49% computational
fluid dynamics

11.79% climate & ocean
4.56% biochemistry
1.44% molecular chemistry
0.77% combustion

v

Fig.1 FLOP usage by domain in HPC on a
typical supercomputer. Ref.[2]

To some extent, one may even argue that cloud
computing is repackaged or broken-down HPC for
customers not traditionally having or being able to
afford a stake in or access to large installations.
Even though FreeBSD already excels as an appliance
solution, other capabilities (hypervisor choice, stor-
age, security, network, etc.) matter more than the
compute OS. I will focus here on capabilities for
HPC, either the compute or developer OS, how
they map onto more general computing needs, and
try to highlight how FreeBSD would benefit from
some HPC-targeted improvements.

As FreeBSD users and developers, we are aware
of and value the inherent advantages of FreeBSD: a
consistent experience of applications and libraries in
the ports system, the easy build and deployment of
custom packages potentially with architecture-spe-
cific optimizations, and, in general, a very stable
operating system experience. Most importantly, the
harmonized ports experience allows us to propa-
gate changes across all parts of the OS interacting
with the user or developer consistently.

Languages

What are the tools of HPC—the applications used
by researchers to transform FLOPS into knowl-
edge—made from? If we remember that HPC was
one of the original purposes of computers, the
answer that the majority of computing time is used
by Fortran codes is less of a surprise. More than
65% of compute cycles are spent on Fortran codes
on a typical installation. This share increases if one
considers the numerical Fortran libraries used in
mixed-language codes. Unfortunately, this shows
that Fortran is alive and unlikely to go anywhere in
the near-term to mid-term due to the size and com-
plexity of existing code bases. Hence, HPC support
absolutely requires Fortran support. Due to the
effective absence of the typically used commercial
compilers on FreeBSD, we fall back to the open-
source alternatives.

Currently, if a port specifies USES=fortran all
architectures will use the gfortran compiler from
lang/gcc. gfortran is a good Fortran compil-
er that produces stable, fast binaries and supports
all relevant Fortran standards. Currently, using
gfortran requires explicit specification of the
rpath to the linker to search for GNU libraries for
both that port and, if it is a library, all dependent
ports (or out-of-ports tree applications, for that
matter). While trivial, it significantly increases the
maintenance burden of porters and developers.
Remedies are being discussed currently, but no
patches have landed in the tree yet. Also recall that

all possible architectures (among them amdé64) use
the LLVM-based clang compiler as the base com-
piler for licensing reasons and, hence, by extension,
as the default ports compiler. Instead of sorting out
mixed-compiler environments, it is then quite often
easier to simply rely fully on the GNU compilers for
mixed-language programs. This is a mildly unsatisfy-
ing situation.

Is there a more fundamental improvement possi-
ble? Maybe. £1ang is an open, LLVM-based, new
Fortran compiler. [4] Its frontend is derived from the
well-established Portland Group’s compiler and was
open-sourced and continues to be maintained by
NVIDIA. It since has found support and use by AMD
in its AOCC package as well. £1lang supports only
up to Fortran 2003 language features and is limited
to 64-bit architectures. FreeBSD now contains
devel/flang as a preview. Certainly, some time
and effort are required to make this port competi-
tive with gfortran and vet it properly for HPC
uses. Just very recently, plans from NVIDIA became
public to rewrite large parts of £lang to improve
its feature set and likelihood of being accepted
under the official LLVM umbrella. Uptake within the
HPC community will be interesting to observe, but
the added competition should prove beneficial to
the GNU compiler either way.

Let us think beyond the single core. As noted
above, a typical cluster contains tens of thousands
of cores, and jobs are typically required to use tens
to hundreds of them in parallel. Two major
approaches exist for scaling out in HPC: OpenMP
[5] and the Message Passing Interface (MPI) [6].

OpenMP mostly targets shared-memory
machines with later standards having support for
accelerator offloading and is discussed below. It is a
relatively simple, pragma-based approach, supports
C/C++ and Fortran, and is commonly used to paral-
lelize over loops in a data-parallel fashion.
Currently, our ports tree will again default to the
lang/gec port if a USES= compiler:openmp
is encountered. For this reason, ports typically will
not enable OpenMP by default (including some com-
monly used ones like graphics/ImageMagick) and
hence will be limited to a single core.

A better alternative exists for at least amd64 and
1386; the 1ibomp library associated with the
LLVM project since the initial open-source release by
Intel. It has not been imported into base yet, but a
review for an older library version exists. In its hope-
fully temporary absence, the ports system should
use one of the devel/11vm ports that do include
libomp. Multiple integration tests have been done
and the feature should soon be ready to land.
Hopefully this will also incentivize fellow developers

July/August 2018

31

speedup vs netlib

32

20

to add the necessary FreeBSD bits for other archi-
tectures supported upstream. My tests indicate that
libomp integration in LLVM is not ideal from a
performance perspective; in particular, LLVM's vec-
torizer does not work (well) if OpenMP’s simd
pragma is used in conjunction with standard
OpenMP thread parallelization (e.g., parallel
for). But certainly, suboptimal parallelization is
preferable to no parallelization.

MPI on the other hand operates through func-
tion calls into the MPI communication library.
It features both simple send/receive/broadcast
features as well as more advanced operations
like reductions. MPI is used both for process-
based intra-node, as well as inter-node, paral-
lelization, and on the hardware level, typically
uses a fast interconnect such as InfiniBand.
Typically, MPI-enabled software packages are
compiled using mpicc/mpi£90 wrapper scripts
which configure the underlying compilers to find
MPI headers and link against the MPI library.
Within the ports tree, multiple MPI choices exist
and we are only limited by the underlying com-
piler toolchain for Fortran.

Numerical Libraries

A large part of the high performance in HPC does
not result from application code, but instead, in
the judicious and abundant use of highly-optimized
numerical libraries implementing standardized APIs.
The arguably most important APIs are BLAS, a col-
lection of basic dense linear algebra operations
such as matrix-matrix multiplications, LAPACK, a
collection of more complicated solvers such as
Cholesky or LU decompositions, and Fast Fourier
Transformations (FFTs), typically in the FFTW3 API
incarnation. Their fundamental nature also makes
them a common dependency in our ports system,
e.g., for audio and graphics applications.

Choice in libraries implementing these APIs is
much less important than performance and fea-
tures of a single set of them. Most HPC clusters

provide vendor-tuned, assembly-optimized BLAS
and LAPACK libraries. For FreeBSD, we have multi-
ple options exposed through the blaslapack
selector. By default, this selector will use
math/blas and math/lapack. These are
Fortran-source, reference implementations and, as
such, not competitive with optimized alternatives
such asmath/blis and math/libflame. Both
the reference implementations and math/open-
blas have a Fortran dependency unlike the FLAME
project’s BLIS and 1ibflame [7].

As we can see from Figure 3, both the
OpenBLAS or BLIS implementations show a com-
manding lead in performance, starting from small
to medium-sized matrix-matrix multiplications if
their CPU architecture optimized kernels are used.
More importantly, even if BLIS's source-only refer-
ence implementation is used, the implementation
and blocking scheme results in an up to 80% per-
formance advantage. Additionally, BLIS provides
the ability to use pthread parallelization, which is
of less impact in this test case. The FLAME project
has expressed interest in working with us, accept-
ing pull requests of FreeBSD changes and imple-
menting features such as runtime kernel selection
which we need for generic packages. Hence, BLIS
is a good candidate to be our default BLAS imple-
mentation and rids us of a low-level Fortran
dependency.

The math/libflame port has recently been
updated to a recent development snapshot and
configured to expose a LAPACK interface for
amd64 and 1386 CURRENT. More vetting is
required before the FLAME libraries can be added
as a blaslapack option for recent releases. Work
in this regard is ongoing.

The status of other numerical, engineering, and
scientific libraries on FreeBSD is already excellent:
the math/££tw3 port is in great shape; we also
have a variety of development libraries from a
range of domains including quantum
physics/chemistry ready to use and multiple active
ports committers in that realm.

======$§”’V

= netlib gfortran

m—Carrizo BLIS g++

== Carrizo BLIS clang++

=== Carrizo BLIS g++ -pthread
OpenBLAS g++/gfortran
reference BLIS clang++

Fig. 3. Speedup of BLIS and OpenBLAS over
the reference netlib BLAS for matrix-matrix
multiplications (dgemm) of different sizes
M/N/K on an AMD A12-8800B CPU. Data
averaged over 1,000 evaluations on FreeBSD
HEAD, compilation with -02, all libraries com-
piled with -mavx -mavx2 -msse -msse2
-msse3 -mssed4 -msseda -mssed.l -
mssed4.2 -mmmx -maes -mbmi -mbmi2-
mfléc -mfsgsbase -mtune=bdveri4, BLIS
compiled with clang++ 5.0.0,
netlib/OpenBLAS with g++ 6.4.0.

——

N

128

256 512 768

M/N/K

1,024

1,280

1,536

FreeBSD Journal

Develo in[c)g on and Porting
to FreeBS

With an overall, relatively positive status of the lan-
guages and libraries on FreeBSD, how hard is port-
ing HPC applications to and developing them on
FreeBSD? Typical challenges arise from the use of
nonstandard make systems (typically combinations
of shell and other scripts as well as make files), the
prevalent use of Linuxisms [8] such as hardocded
system paths and other assumptions, the generally
nonstandard compliance of code (e.qg., it only com-
piles and yields the correct result with a specific
proprietary compiler [version]), and also our own
BSD-isms such as the rpath. All but the last chal-
lenge are arguments in favor of porting: code bases
typically improve and lingering bugs are exposed
and fixed. Porting to FreeBSD has tenable advan-
tages if done properly: just as with any other appli-
cation, changes should be upstreamed, explained,
and continuously maintained. In the meantime, we
should consider reducing our BSD-isms to ease the
porting task.

Continuous maintenance or development on
FreeBSD is straightforward. Even though the nor-
mal commercial toolchains for profiling, debugging,
etc., are absent, the base system and ports collec-

tion includes excellent free alternatives. dtrace
and hwpme in conjunction with benchmarks/
flamegraph make analyzing application perform-
ance from the user down to the kernel level
straightforward. devel/gdb and 11db may not
have the same level of graphical user interface sup-
port as the commercial alternatives but do get the
job done. Even though most HPC code is still devel-
oped with vi or emacs, modern editor/IDE alter-
natives are present with java/eclipse,
java/netbeans, and the 1inuxulator-using
editors/linux-sublime3.

Recently, | have found bhyve provides an invalu-
able addition to the HPC developer’s toolkit. No
matter whether bugs are to be located only occur-
ring on a particular platform configuration, specific
Linux releases need support, or a full, continuous
integration setup is needed, bhyve provides an
excellent solution for all these use cases.

Accelerators

Probably the most disruptive change to the HPC
landscape in the last decade was the introduction
of accelerators into the HPC mainstream and its
subsequent trickling into the workstation and main-
stream market. Even though most TOP500 installa-

Iridium

Thank you!

The FreesBSD Foundation would like to
acknowledge the following companies for
their continued support of the Project.
Because of generous donations such as
these we are able to continue moving the
Project forward.

NetApp’

Silver

B Microsoft &Tarsnap

FreeBSD

FOUNDATION
Are you a fan of FreeBSD? Help us give back to the é\ NeoSmart TEChﬂOlogies

vmware

Project and donate today! freebsdfoundation.org/donate/

\/ ccnnecting ideas

Please check out the full list of generous community investors at
freebsdfoundation.org/donate/sponsors

July/August 2018 | 33

34

tions still do not contain accelerators, the impor-
tance of accelerators for HPC and workstation
applications cannot be overstated. Various means
to exploit their potential exist, with the most
important ones being direct programming via
NVIDIA's proprietary CUDA language, the open
alternative OpenCL, or through offloading via
OpenMP.

These programming frameworks all rely on
three fundamental parts: kernel driver support, a
compiler or library, and a runtime environment.
Through the FreeBSDDesktop project, we now
have access to more recent open drivers for AMD
and Intel GPUs. NVIDIA GPUs continue to be sup-
ported by the binary driver in the ports. There is
no official CUDA support for FreeBSD; however,
some people have reported success in the past
compiling CUDA applications on Linux and run-
ning them through the Linuxulator on FreeBSD.
Our OpenCL support is in reasonable shape: we
include the nonofficial OpenCL clover library from
the Mesa project for AMD GPUs. Its performance
is absolutely not competitive but it works relatively
reliably. For Intel, we include their official beignet
implementation; however, Intel's GPUs are less
competitive for compute tasks. Developing
OpenCL applications is well supported; we include
the CPU OpenCL emulator lang/pocl and the
sanity checker devel/oclgrind. The exploita-
tion of accelerators through OpenMP offloading is
not supported currently but is, in general, not
widespread yet.

A major improvement could be to include the
Radeon Open Compute (ROCm) project [9]. It
needs an open companion kernel driver, amdk£d,
for the regular open amdgpu driver and provides
a large open ecosystem centered around LLVM
compiler technology to support both OpenCL and
an open competitor to CUDA called HIP on AMD's
GPUs. The FreeBSDDesktop team is now actively
working on porting amdk£d, and the large ROCm
stack should be straightforward if somewhat
labor-intensive to port.

Whats Next?

The highest priorities should be to vet FLAME's
BLAS and LAPACK libraries and add them as an
option to the blaslapack selector. Secondly,
libomp should be used as the default for amdé64
through devel/11lvm. Subsequently, some stabi-
lization and extension of these major changes to
architectures other than amdé64 will be needed. In
the mid-term, | am hoping that we will be able to
have ROCm working on FreeBSD. Another big-
ticket item is proper SIMD/vectorization support in

FreeBSD Journal

our Libm and from LLVM. Together, these should
already be an interesting HPC platform for devel-
opers. Hopefully, in the long-term, we can
improve the Fortran situation and make FreeBSD a
truly compelling HPC alternative.

It is also important to realize that improving
FreeBSD for HPC will not hurt it, either as a server
or workstation system. On the contrary, it will like-
ly be a boon for these use cases.

Acknowledgments

| wish to express my gratitude to all FreeBSD
developers and users for making FreeBSD the plat-
form it is. In particular, | would like to thank the
FreeBSDDesktop team and my mentors Matthew
Macy, Niclas Zeising, Steve Wills, and Rene Ladan.
| also extend my deep gratitude to the BSDTW
conference and organizers where the content of
this article was first presented as a lecture. e

REFERENCE LIST

[1] InsideHPC: https://insidehpc.com/
hpc-basic-training/what-is-hpc/

[2] Data source: UK supercomputer ARCHER
application usage of the last month,
http://www.archer.ac.uk/status/codes

[3] Data source: TOP500 list, June 2017,
https://www.top500.0rg/statistics/ list/

[4] Flang github: https:/github.com/
flang-compiler/flang

[5] OpenMP https://www.openmp.org/

[6] MPI forum https://www.mpi-forum.org/
[7] FLAME project https:/github.com/flame

[8] Linuxisms discussion
https://wiki.freebsd.org/AvoidingLinuxisms

[9] Radeon Open Compute
https:/github.com/RadeonOpenCompute/

JOHANNES DIETERICH started using FreeBSD
with the 6.1 release and became a ports com-
mitter a year ago. During the day, he has
spent the last nine years in academic research
working on high-performance computing for
a range of problems from global optimization
to quantum chemical methods. Recently, he
started working on GPU-accelerated deep
learning for AMD.

