
By Ayaka Koshibe

14 FreeBSD Journal

A Quick Tour
I’ve been running both FreeBSD and
Linux uninterrupted since the mid-
1990s. I’ve run many different Linux dis-
tributions over the years, most recently
focusing on CentOS. I also have signifi-
cant experience with Mac OS X and
NetBSD and have experimented with
many other BSD platforms. As a staunch
agnostic with a firm belief in the value
of open standards, I like to remain
familiar with all the options in the
POSIX world so I’m always prepared to
choose the best tool for the job.

In the most basic sense, software-defined networking (SDN) can be thought of as an approach to
building a network that can be managed as if it were one logical entity. An SDN-based network is
typically built from programmable whitebox and software switches, and is managed from control
applications that use their global view of the network to coordinate the switches to act as one. The

result can look fairly unfamiliar to those used to “classic” networks that are configured on a per-device
basis and the behavior of which is determined by distributed network protocols. Network emulators can
be useful tools for gaining better insight into how these networks behave and are put together.

Mininet
Mininet is a fairly well-known emulator for SDN-based networks that was popularized by its ties to
OpenFlow, a network control protocol from the dawn of SDN. It was also recently added to the ports col-
lection. Using that as an occasion, here is a quick tour of Mininet in the form of an SDN primer.

Before we begin: Mininet depends on VIMAGE for emulating network hosts, so readers wishing
to follow along will need a host with VIMAGE support. The ported version of Mininet also does-
n’t support the full set of features of the original and is very much a work-in-progress. It is also
heavy-handed with cleanup, so it is best not run on machines used for hosting other jails or
Open vSwitch instances.

Installation
Mininet can be installed like any other application: with pkg(8) as ‘py27-mininet', or from the ports tree
as 'net/mininet'.

The mn Command
The Mininet version of a "Hello world" is a tiny network
launched with the mn command:

S E E
T E X T
O N L Y

OF SDN USING MININET

mn --controller=ryu
*** Creating network
...
*** Starting CLI:
mininet>

Sept/Oct 2018 15

This creates a network with two hosts connected through a switch controlled to act as a learning switch. It
also launches a CLI for interacting with the network. For example, links shows all of the links in the network:

mininet> links
h1-eth0<->s1-eth1 (OK OK)
h2-eth0<->s1-eth2 (OK OK)

And dump shows information about the nodes in the network:

Either ? or help will show all available commands.

Inspecting Control Traffic
The output of dump shows that each node has a name, one or more ports, and a PID of the bash process that
represents it. It also shows that the hosts—actually vnet jails—are at 10.0.0.1 and 10.0.0.2 in this network,
and the controller, Ryu, is listening for switches on port 6653. Ryu uses OpenFlow to program the switches
that connect on this port. A typical way of troubleshooting OpenFlow switches and controllers is to inspect the
control messages on this channel. We can try this by running tcpdump (or another packet analyzer) in another
terminal:

tcpdump -i lo0 port 6653

We should be able to see the keepalive ECHO_REQUEST and ECHO_REPLY messages sent between s1 and
c0. Next, ping one host from the other. The CLI interprets any commands after a host’s name as bash com-
mands to be run from that host:

mininet> h1 ping -c1 h2

A host’s name is translated by the CLI into its corresponding IP address.
Alternatively, the pingall CLI command can be used to ping between all pairs of hosts:

mininet> pingall
*** Ping: testing ping reachability
h1 -> h2
h2 -> h1
*** Results: 0% dropped (2/2 received)

In either case, we should see the switch (localhost.<high port>) sending PACKET_IN messages to
the controller (localhost.6653), and PACKET_OUT and FLOW_MOD messages sent back by the controller in
response. Switches use PACKET_INs to send packets that it doesn’t understand how to process to the con-
troller, in this case, the ARP and ICMP messages. Controllers use PACKET_OUTs to instruct a switch to output
a particular packet (the one sent in the PACKET_IN, so that it is not “lost”), and FLOW_MODs to modify how a
switch handles different types of traffic. No new PACKET_INs should be generated by s1 in response to
another ping until the modifications expire from disuse.

A ctrl-D or the exit command will exit the CLI and tear the network down.

Experimenting with Controllers
The controller's role in the network can be directly demonstrated by running a network without one. This

can be done by passing ‘none’ instead of ‘ryu’ to mn’s —controller option. The hosts on this “headless” net-
work should not be able to ping each other.

Another useful option is ‘remote’, which allows a network to use a controller running outside of Mininet’s

mininet> dump
<Host h1: h1-eth0:10.0.0.1 pid=8410>
<Host h2: h2-eth0:10.0.0.2 pid=8414>
<OVSSwitch s1: lo0:127.0.0.1,s1-eth1:None,s1-eth2:None pid=8420>
<Ryu c0: 127.0.0.1:6653 pid=8401>

control. Developers might test their controllers by pointing a Mininet network at them with this option.
Assuming that a controller is running at 192.168.0.100 and listening on port 6633, the following will launch a
network and connect the switch to it:

Creating Various Topologies
The --topo option is used to create various topologies with mn. The linear and tree topologies are useful for
creating larger loop-free networks, whereas the torus topology is useful for testing a controller’s loop-handling
abilities. Topologies are parameterized so that their sizes can be specified. For example, to create a tree three
levels high and fanout of two:

mn --controller=ryu, topo=tree,3,2

The torus also takes two values, and linear takes one.

Scripting with Mininet
Mininet can also be used as a collection of Python libraries for scripting experiments. With the caveat that they
are in their original forms (and will most likely not work on FreeBSD), the package includes several example
scripts that demonstrate how to create custom topologies, network components, and experiments. As with
other applications that come with examples, they should be found under /usr/local/share/
examples/mininet/. But, as a small example, the following script defines a custom topology resembling
mn’s default topology, uses host h1 to ping h2’s address, and exits:

Once saved, it can be run like any Python script:

python example.py

Finding Out More
While only a subset of the upstream features are supported by this port,
the main project maintains resources that should provide a better idea of
how Mininet can be used. These can be found at:
https://github.com/mininet/mininet/wiki/Documentation

And the port itself is maintained at:
https://github.com/akoshibe/mininet

So this concludes our whirlwind tour of Mininet. Hopefully, it serves as
a decent starting point for those interested in exploring the area of SDN. •

16 FreeBSD Journal

from mininet.topo import Topo
from mininet.net import Mininet

class MinimalTopo (Topo):
def build(self):
h1 = self.addHost('h1', ip='192.168.0.1')
h2 = self.addHost('h2', ip='192.168.0.2')
s1 = self.addSwitch('s1')

self.addLink(h1, s1)
self.addLink(s1, h2)

net = Mininet(topo=MinimalTopo())
net.start()
h1 = net.getNodeByName('h1')
print(h1.cmd('ping -c1 192.168.0.2'))
net.stop()

mn --controller=remote,ip=192.168.0.100,port=6633

Ayaka Koshibe became
involved in the area of
SDN as a college student
assisting in the deploy-
ment of infrastructure for
the GENI OpenFlow
campus trials. She cur-
rently works at Big
Switch Networks as a
member of the SDN con-
troller platform team,
and is also both main-
tainer and upstream for
the Mininet port for
FreeBSD and OpenBSD.

