
TCP/IP in a Nutshell
he Internet is built upon a small number of networking
protocols which, when taken together, implement all
that is necessary for one computer to talk to another. All
these network protocols are implemented within the

operating system's kernel. The reason network protocols are
implemented within the kernel is that they are a resource that is
shared among all of the users of a system, whether those users
are humans or programs. Figure 1 shows some of the network
protocols that implement the current Internet. We see that the
protocols are layered and that they form a stack, hence the term
Network Stack. Network protocols are thought of as layers
because a system as complex as the Internet is built up of several,
cooperating protocols, each of which has specific responsibilities
and is dependent upon the layers below it to provide services
necessary for the sum of the parts to implement the whole. Our
figure shows three protocols, Address Resolution (ARP), Internet
(IP) and Transmission Control (TCP).

For two computers to successfully talk to each other over an
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The FreeBSD network stack is the kernel software that, when taken
together, allows programs on one computer to talk to programs on
another. It is a highly reusable software artifact that has been employed
not only within the operating system, but has been ported many times
to other environments, including embedded operating systems com-
pletely unrelated to FreeBSD. For most developers, working both inside
and outside the operating system's kernel, the network stack is a black
box, something to be used but rarely understood. This article provides a
short overview of the network stack software and how it works.

Network Interface

Fig. 1
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Internetwork, three things must take place. The first is that information from one computer must be bro-
ken down into small enough pieces, which we call packets, to be transmitted between the source and des-
tination of the communication. When you click on a link on the web and request a page, that page of data
doesn't get transmitted as one large image of a cat; that image has to be broken down into pieces, often
about 512 bytes in size; each piece must be sent across the network, and the destination computer must
put all the pieces back together. The Transmission Control Protocol (TCP) is the protocol and layer that is
responsible for the process of breaking down an image into packets, and giving each packet a sequence
number, so that the destination computer can reassemble the packets it receives into the original image.

Once data is broken down into packets, they must be transported between the source and destination
computers. The Internet Protocol (IP) is responsible for getting each individual packet between the source
and destination. Every IP packet has both a source and destination address that indicates the ultimate end-
points of communication, but the Internet is a store-and-forward, packet-switching network, which means
that most endpoints are not directly connected to the same local network. For an IP packet to reach its des-
tination, it must be passed over a series of hops between one or more routers, before it reaches its final
destination. The IP layer in the operating system kernel is responsible for finding the next hop along the
path between the source and destination endpoints.

The Internet Protocols are abstract enough that various types of networking hardware can pass these
packets without knowing anything about what is contained within the packets. Whether a packet goes
over a wired or wireless link is unimportant to IP, but at some point, every computer or router has to con-
tact the next hop along the path to the ultimate destination. For Ethernet-based networks, the Address
Resolution Protocol (ARP) is responsible for finding the hardware address for the next hop along the path in
the network. Every piece of Ethernet hardware has a 6-byte source and destination address, and it is ARP's
job to translate a local IP address, usually of the next hop router, into a hardware address that the router is
listening to.

Most programmers interact with the TCP/IP stack via the sockets(2) set of system calls. One of the key
innovations of sockets is that it provides the programmer with an API that looks very much like a simple file
access where all of the standard APIs, such as read(2) and write(2) work in the same way for network
communication as they do for local file access. The Socket code can be thought of as a layer on top of the
TCP/IP protocols that crossed the User/Kernel boundary to give programs access to network communication.

Summing up, the TCP/IP protocol suite running in a kernel on top of a wired Ethernet must: break a data
stream into packets (TCP), address those packets so that they can move between a source and destination
(IP), and finally figure out which piece of hardware is the next hop along the path between the source and
destination (ARP). The sockets API ties the network stack back into user space so that programs can have
access to the networking code. All of these layers are implemented in the FreeBSD kernel,

The Network Stack
Our goal here is not a full read through of the source code, which is well beyond the scope of this article,
but, instead, to give you, the reader, an idea of how these pieces fit together and how you might even
start learning how the code works.

The FreeBSD Network Stack is implemented in a set of C files contained in the operating system's sys/
directory. The TCP and IP protocols are contained within sys/netinet/, and the ARP protocol, as well as
much of the support for various link layers, such as Ethernet, are kept in sys/net/. The sockets API is
mostly contained in the sys/kern/ directory, along with much of the generic kernel infrastructure.

As the network stack is implemented as a set of layers, we must be concerned not only with the respon-
sibilities of each layer, but also the form and function of how data is passed between them. Looking down
from the top of the stack, a program hands a set of bytes of arbitrary length down into the network stack
via the sockets API.

Each endpoint of communication for a program on a system is represented by a socket. The socket structure
contains a great deal of metadata about the data it handles, as well as two queues for data—one for inbound
communication, and one for outbound, which we call the receive and send socket buffers respectively.

All memory in the network stack is kept in a single, unified, data type called an mbuf, short for memory
buffer. A set of mbufs can be chained together via a forward pointer, and this is how large areas of mem-
ory are broken down into packets that can be properly handled by the lower layers of the network stack.
The mbuf system is a kernel private memory pool which user programs are never exposed to.

A write(2) call on a socket takes an area of memory and, via the system mechanism, makes that data
available in the kernel, placing it into a socket buffer. Each socket buffer maintains a list of buffers that
contain the data that's to be transmitted or that is in the process of being received. Once the data is con-
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tained in the socket buffers, the TCP machinery is invoked in the kernel and the mbufs contained in the
socket buffer are updated and modified to be TCP segments, which are then further broken down by the
IP protocol machinery and finally transmitted by the kernel via an Ethernet device driver.

Receiving data in the network stack is more complicated than reading from a file on a local system
because network data can arrive at any time. A web server does not know to call read(2) before a web
browser contacts it, and so the FreeBSD kernel must be constantly waiting for data and ready to create
new communication endpoints as they arrive. When a client contacts a server, a TCP packet with a special
flag (SYN) is received by the kernel, and the kernel then attempts to set up all of the state required for
communication with the new endpoint. Only after the kernel has satisfied itself that it can communicate
with the new endpoint does it alert a user space program that there is a new incoming connection, which
the user space program can now accept(2) and then begin to read(2) data.

Look but Don’t Touch (DTrace and the Network Stack)
How can we look at the network stack without trying to read the entire source code all at once? Using
the built-in DTrace tracing system on FreeBSD, we can actually see each layer in action while running
some simple test programs. As DTrace is completely safe to use on a running system, we can start to
explore the network stack without having to modify and recompile the kernel code. For those not familiar
with DTrace, you might want to start with the tutorial at https://wiki.freebsd.org/DTrace/Tutorial. Since this
article presents a set of worked examples, it's easy enough to run these commands on a system of your
own without knowing all the ins and outs of DTrace.

For simplicity we'll start with looking at an outgoing network connection. The curl command can be
used to retrieve a single web page, and so we'll use www.google.com as our example.

As curl does not encrypt its data, unlike ssh, it is an excellent test tool with which we can look at
the network stack.

Figure 2 shows how we can manually retrieve the base page from Google's website. The web page pre-
sented by Google is deceptively simple when seen in a web
browser, but they embed a lot of code in their base page and so
the output from the GET command runs to a few pages in a stan-
dard terminal. We're not interested in the output; we're interested
in what happens when we initiate the communication.

Starting from the socket layer, we can see how curl
begins communicating with Google by looking for calls to the
socket(2) system call. All network communication requires a

socket to be created. The socket call as seen by DTrace in Figure 3 doesn't show much of interest, and
that's because all the socket(2) call does is set up the program's local endpoint for communication. 
To catch curl communicating with Google, we need to look instead at the connect(2) call. From a 
program's standpoint, connect(2) is the actual beginning of communication and is also the routine that
will start the network stack's machinery which we can then observe. The connect(2) system call eventu-
ally leads, in the kernel, to TCP's connect routine being called, which can be seen using DTrace's
tcp:::connect-request tracepoint. The connect-request tracepoint has quite a lot of information
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about the connection being attempted but for now we simply wish to see where the connection is going.
Figure 4 shows the output of a DTrace one-liner that catches curl in the act of contacting Google. We

specify the connect-request tracepoint so that we can see our source machine trying to contact the desti-
nation, and we print the tcps_raddr (remote address) to see from what IP address Google is currently
willing to communicate with us. If you run the curl command three times, you will see three lines of out-
put, one for each connection.

Connecting the source system to the destination system requires the execution of the TCP state
machine. Using the /usr/share/dtrace/tcptrack, we can see all of these state changes when con-
tacting Google and retrieving its home page. Figure 5 shows the entire set of state transitions that the TCP
layer moves through in order to set up a connection, retrieve data, and then close the connection and
clean up after itself. Each socket starts out in a closed state (state-closed) and waits there until com-
munication is initiated. When our source connects to the destination, it sends a special packet marked with
a SYN flag, which moves the state machine into the state-syn-sent. Our socket will remain in this
state until the destination replies and continues to set up the connection, indicated by state-established.
The TCP state machine
remains in the established
state until one or the other
side of the connection
wishes to close it. When
the connection is closed,
the state machine moves
through various states, all
shown on the last three
lines of Figure 5. A fuller
discussion of the TCP state

machine can be found in The Design and Implementation of the FreeBSD Operating System, but for our
purposes, once the state transitions to state-time-wait, we are satisfied that this connection is closed. 

While connection setup and teardown is a complicated affair, it actually doesn't move any of our data
between systems. In order for us to see how curl communicates with Google, we can use DTrace's TCP
send tracepoint. Figure 6 has a DTrace one-liner that will show all of the data being sent and received via
TCP. If we were to try this test with ssh(1) or an HTTPS-enabled web server, we would not be able to
find the plain text because the data would be encrypted before the TCP layer would see it, but with curl
we get to see the plain text. In our example, we can see both the raw bytes in tabular form as well as the
ASCII representation of the communication, and we can clearly see the GET command issued to the
Google server. That's the same GET command that is passed down via a write(2) call into the network
stack, which is then put into a socket buffer, handed to TCP, chopped up into packets, and finally transmit-
ted via IP to the server.

In order to clearly see how the TCP and IP layers interact, we can compare the output of Figure 7 to
Figure 6. Figure 6 was at the TCP layer and therefore only had TCP information, such as the packet’s source
and destination ports, sequence number, etc. Figure 7 is at the IP layer, one layer lower, and, as such, we
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see that the GET command has moved a considerable way
further down into the data stream. The information required
by the IP layer, such as the destination and source network
address, is responsible for this displacement of the GET
command.

Conclusions
Networking is a complicated topic and its implementation in
the operating system kernel is covered at various levels in
some of the Further Readings (1, 2 3). Understanding how
the network stack works requires remembering that the net-
work stack is broken down into modules that roughly match
the protocols that are being implemented. The Internet
Protocols are in the IP layer, and the Transmission Control
Protocol is contained in the TCP layer, and these layers inter-
act with each other through a small number of well-defined
kernel APIs. The DTrace system on FreeBSD is the perfect tool
for those who wish to start exploring the network stack.
Various DTrace-related tutorials can be found in the Further
Readings section at right (4, 5). •
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