
By Jonathan Looney

10 FreeBSD Journal

TCP

The Challenge

There are many reasons why there has tradi-
tionally been fear around making changes
to the TCP stack.

One challenge is the code complexity. The TCP
stack is quite mature. That maturity brings value,
because the TCP stack has shown itself to be reli-
able over a long period of time (and includes
myriad bug fixes to enhance that reliability). But
that maturity also brings with it complexity: there
is legacy code that may not have been cleaned
up, special cases that have been added on over
the years, and various branches that can be
somewhat obscure. That complexity means it is
quite easy to break something unintentionally.

To make the task even more challenging, once
you have written your code, it is hard to validate
whether things are truly “better” or “worse.”
(And, in fact, something might be “better” in
some way while being “worse” in another way.)
For example, let’s assume you are trying to fix a
problem where the TCP stack will retransmit TCP
segments unnecessarily. You may fix that bug
(lowering the number of unnecessary retransmis-

sions) but accidentally
reduce goodput (the
effective data through-
put rate to the client
application) because you
are no longer retrans-
mitting as aggressively.
However, given the very
wide variation in client
behavior and network
conditions that exist on
the Internet, it is hard to
test even a reasonable

fraction of the possible cases in a lab.
It is also easy to introduce truly catastrophic

bugs without noticing. For example, it is not
unheard of for a TCP developer to make a seem-
ingly-innocent change and to find out (usually,
some time later) that a timer is no longer arming
in a corner-case situation and some TCP connec-
tions are becoming stuck. Likewise, we have seen
cases where a TCP stack fails to send data when
it should.

And, to make this all much more complicated,
mistakes are hard to fix. After all, if you break
TCP connectivity, you may not even be able to
copy a fixed kernel to the device.

For all of these reasons, it is both important to
thoroughly test TCP changes and also very hard
to do.

The Tools
At Netflix, we use various tools to help us vali-
date TCP changes. During and immediately after
development, we may use various unit tests or
Packet Drill tests to validate that we are seeing
the correct behavior. However, once we move on

S E E
T E X T
O N L Y

STACK VALIDATION AT NETFLIX

From the time I started writing TCP code, there has always been a
great deal of fear around changes to the TCP stack. This comes from
multiple sources, but is rooted in the difficulty of thoroughly testing
TCP changes prior to deploying them. This is a challenge Netflix
faced as it began investing significant time and energy in optimizing
the FreeBSD TCP stack used on its Open Connect Appliances (OCAs),
which are the servers that deliver video traffic to Netflix streaming
clients. In this article, we will describe the way Netflix removed the
fear from TCP development and actually gained the ability to confi-
dently test its changes.

TCP
By Jonathan Looney



Sept/Oct 2018 11

to lab testing or field testing, we fundamentally use
three tools to help us validate TCP changes, client-
reported and server-reported metrics, modular TCP
stacks, and the Blackbox Recorder.

Metrics
Once a new TCP stack has reached the point of
being a candidate for deployment, we begin to have
clients use it. Both our clients and our servers gather
detailed statistics about their TCP sessions. This
includes information such as goodput, RTT, and the
number of retransmissions. The clients also tell us
how quickly they got the first chunk of data, how
steady the data stream was, and whether they
encountered any disruptions to the data stream dur-
ing playback. (And, of course, if the performance is
too far below what the clients are expecting, they
will attempt to switch their traffic to an OCA outside
of the test. This keeps us from causing too much of
a negative impact to client traffic.)

Being able to see metrics from both sides of the
connection is a great help in understanding the way
the code is functioning. Further, Netflix has a robust
data analysis pipeline that allows us to retrieve
detailed reports comparing TCP connections that
used different TCP stacks and to determine whether
the differences are statistically significant. By looking
at this data, we are able to detect fairly small differ-
ences between two TCP stacks.

However, this still leaves an obvious need: you
must be able to compare two TCP stacks in a reli-
able way. For that, we use modular TCP stacks.

Modular TCP Stacks
Netflix uses the modular TCP stack functionality to
run multiple TCP stacks on a single server. This has a
number of benefits. First, we can choose to use dif-
ferent TCP stacks for different applications. Second,
we can thoroughly test new TCP stacks side-by-side
with older TCP stacks. Finally, we can (at least, in
theory) deploy fixed versions of TCP stacks without
requiring an upgrade to the underlying operating
system. (We don’t currently regularly make use of
on-the-fly TCP stack changes, but we are currently
testing the infrastructure to enable that.)

To understand how modular TCP stacks benefit
Netflix, it may help to explain the way we now do
TCP development at Netflix.

We do our development on a development copy
of the TCP code. When we ship a new candidate
TCP stack, we copy that code to its own directory
and give it a version that is incorporated into its
name. Once copied, we try to only update that code
to deal with necessary API changes. The modular
stack infrastructure in FreeBSD allows us to compile
the same code, but use different stack names. It

conducts symbol mangling to prevent symbol con-
flicts between different copies of the same code and
lets us install the different versions with different
stack names. This lets us literally copy our develop-
ment code into a new TCP module directory, change
one or two Makefile variables, and instantly have a
new version of the TCP stack.

(By analogy, you can think of these as being simi-
lar to FreeBSD releases. We develop on stable/11
and then copy to the releng/11.0 branch. But we
will keep developing on stable/11 and eventually
copy it to the releng/11.1 branch. At Netflix, we
treat our TCP stacks similarly to this paradigm.)

This ability to compile the code unmodified but
with a new TCP stack name is a subtle, but impor-
tant, feature. This lets us directly track code changes
between versions without getting distracted by
extraneous, non-functional changes that are there
solely to support the module renaming.

When Netflix has a candidate TCP stack, we will
deploy the old and new TCP stacks side-by-side on
the same OCA. We will then have some number of
clients use one or the other of these stacks on that
OCA and report their metrics. We can then gather
the statistical data and compare the performance of
the two stacks.

For the test, it is important that we run the old
and new stacks side-by-side on the same OCA. This
eliminates many variables that could influence the
results. The underlying hardware, operating system,
and operating environment should impact the two
TCP stacks in exactly the same way. By running the
two stacks side-by-side on the same OCA, we are
able to focus on just the differences caused by the
way the TCP stacks—themselves—perform.

The modular TCP stack functionality also provides
a smooth transition to the deployment of the new
TCP stack. Once we have validated the new TCP
stack on a small-scale test, we move to validate it
with gradually larger tests. In our final test, we
might have the new TCP stack handle 50% of all
Netflix client traffic globally and validate that the
stack still performs as expected. If it does, we can
switch all clients to use the new stack by default.
(And, because the stack can be selected at runtime,
it doesn’t even require a reboot of the OCAs.)

Using the modular TCP stack functionality, we can
also choose the best TCP stack for each application
and client. For example, we might find that the new
TCP stack performs noticeably worse for a subset of
clients. We can set those clients to use the old TCP
stack while we investigate that further while we
have the rest of the clients benefit from the new
TCP stack’s improvements. Likewise, we can conduct
this testing separately for each application running
on our OCAs and change those applications to use
the new TCP stack on their own schedule. This lets



us ensure we are using the TCP stack that we’ve
validated best serves the needs of our clients when
using each application on our OCAs.

The modular TCP stack functionality also pro-
vides us with protection against TCP stack bugs.
We have occasionally found very serious bugs in the
new TCP stacks. We are able to dynamically unload
those modules without interrupting our services.
The OCA (and our clients) continue to function
using the old TCP stacks installed on the OCA.

Once we fix the bug, we can deploy a new TCP
module, load it, and begin testing it. Again, this
doesn’t require a reboot and is fairly seamless. At
the moment, we only regularly use this in develop-
ment, but we are now testing the tooling we’ve
written to enable us to automate dynamic TCP
module deployment across our network of OCAs.

Through the combination of these capabilities,
we can have much more confidence deploying our
new TCP stacks. We are able to easily create named
“release candidate” versions of our TCP stacks,
deploy those on OCAs, test them side-by-side with
the existing stacks, and—if necessary—recover from
a serious TCP stack bug and iterate with new ver-
sions that fix bugs in the TCP stack. This is a drasti-
cally different picture than the culture of fear
described earlier. This is a healthy environment in
which to do confident TCP stack development and
it is enabled by the ability to easily build, deploy,
and use modular TCP stacks.

But, the testing up to this point has focused
heavily on examining metrics maintained by the
client and server. There is one more aspect to our
testing which is worth noting, and that is provided
by the TCP Blackbox Recorder.

TCP Blackbox Recorder
The TCP Blackbox Recorder provides a data stream
of events from TCP connections. It is named the
“Blackbox Recorder” after the flight data recorders
(colloquially known as “blackbox recorders”) carried
on commercial airliners. As initially conceived, the
Blackbox Recorder would log a stream of events
that occurred on a TCP connection to a ring buffer
associated with that connection. If either the user-
space application or the kernel notices that some-
thing has gone “wrong” with the connection, it
can dump out the contents of the ring buffer for
later analysis. (And, in the case of kernel panics, a
developer can pull data from the ring buffer to see
the sequence of events leading up to the crash.)

The events each contain a record of the internal
state of the TCP connection so a developer can
track how the internal state changed between
events. By tracking both internal events and the
internal state of the TCP connection, a developer
can get a good record of why a connection

behaved in the way it did. In fact, this internal
information can produce valuable insights that are
hidden from analysis tools that only track what was
sent and received.

That functionality is very useful and we’ve used it
to debug problems at Netflix. However, the
Blackbox Recorder also has another mode of opera-
tion that can be useful in finding problems. The
Blackbox Recorder allows us to select a percentage
of TCP connections for “continuous” logging,
where it tries to export all the events from the TCP
connection to user space for later analysis. This data
can be useful in understanding exactly what has
occurred on TCP connections—even connections
that we think look “normal.”

During development, we may manually scan a
sampling of these records to ensure the behavior
matches our expectations. We will pay particular
attention to both areas we think should have
changed due to our code enhancements and also
areas we fear might have been accidentally impact-
ed by our code changes. However, there is a limit to
how much we can detect through manual review.

We also have an automated tool that scans the
Blackbox records to validate that each session oper-
ates in keeping with some basic assumptions. For
example, we check that we are sending data at
least once every second or two when we have no
reason to pause (there is window space available
and data to send). This lets us validate that timers
are working as expected. We also check that we
are not exceeding the congestion window and
peer’s receive window for the connection. This lets
us validate that we are not sending data when we
should not be doing so. These types of very basic
sanity checks are valuable in finding corner-case
bugs that escape our lab testing, but are revealed
once we start wider testing with real clients.

When this system finds an error, it posts an alert
for the TCP development team. They can retrieve
the trace and try to determine why the error
occurred. And, thanks to the state information
logged with the events, it is usually fairly easy to
isolate the problem (or, at least, the problematic
area of the code).

An Example
It might help to give an example of how this works
using a contrived example that is an amalgamation
of experiences we have had using this infrastructure
and methodology. 

For this example, let’s assume the current version
of the TCP stack we are using is rack_11. The
development version is rack_12 but has not
changed since rack_11 was created. (In other
words, rack_11 and rack_12 are using the same
code.) We want to fix a bug with unnecessarily

12 FreeBSD Journal



Sept/Oct 2018 13

high retransmissions in rack_11.
We make our code changes to the development

version and test it. We think it fixes the problem. We
now deploy both rack_11 and rack_12 to an OCA
and run a test with a small number of clients. The
metrics look good, so we expand the test to cover a
few more OCAs and additional clients. At this point,
we notice that retransmissions have dropped (which
was expected and is “good”). But, we also notice
that goodput has dropped (which was not expected
and is “bad”). We gather Blackbox traces and find
that we accidentally used a <= comparison where
we should have used a < comparison. This caused us
to not retransmit in some cases where we should
have retransmitted.

We fix this bug in the development version and
test it again. We think it fixes the new problem
(while also still fixing the original problem). We
again deploy both rack_11 and rack_12 to an OCA
and run a test with a small number of clients. The
metrics look good, so we expand the test to cover a
few more OCAs and additional clients. The metrics
still look good, so we commit the code.

Eventually, rack_12 becomes the release candi-
date and rack_13 becomes the new development
version. At this point, we deploy rack_12 to a larger
set of OCAs. The metrics still look good. However, at
this point, the Blackbox analysis program alerts that
we are failing to send data in a small number of
cases. We realize that we have accidentally failed to
reset the retransmit timer in a particular corner case.

We fix this new bug in rack_13 (the new develop-
ment version) and test it again. We deploy both
rack_11 and rack_13 to an OCA and run a test with
a small number of clients. We then request that our
release engineer merge our commit to rack_12. For
the sake of our example, we’ll say he agrees, so
rack_12 now has the new bug fix. We deploy this to
the larger set of OCAs and continue our release test-
ing. The metrics still look good, and there are no
more alerts from the Blackbox analysis program.

Now, we deploy rack_12 to all OCAs in the
Netflix network. We test with a small percentage of
clients. The metrics look good, so we proceed with
testing against 50% of all Netflix clients. At this
point, we notice that the metrics for one client oper-
ating system are poor, while the metrics for all oth-
ers are the same or better. We decide to direct all
Netflix clients to use the new TCP stack, but we
make an exception for the one operating system
with worse metrics and tell the clients using that
operating system to use the old TCP stack.

We then begin to gather focused testing and
debugging data for that one client type in an effort
to understand why it performs more poorly with the
new TCP stack code than with the old code.
Hopefully, we are able to fix the bug in rack_13. 

At that point, we start the testing process again.
In reality, this process sometimes takes longer than

we would like. For example, we have deployed
release candidates across all OCAs in the Netflix net-
work, only to abandon the release candidate in a late
stage of testing due to a subtle metric change that
escaped detection during earlier, more narrow testing
phases. But, even if it sometimes takes longer than
we would like, we are happy with the result this thor-
ough testing process produces: the ability to confi-
dently upgrade the code in our TCP stacks.

TCP Development with Confidence
Given all these tools, we are able to conduct TCP
development with a greater degree of confidence
that we are making things better. We know that we
will not write bug-free code. We know that we will
not catch all the problems in a lab. But we can slow-
ly and carefully deploy TCP stack changes and test
them in a way that ensures we can test TCP stack
changes without having our results influenced by
differences in the underlying hardware or operating
system. And we can validate that the new TCP stack
behaves correctly both by looking at server-side and
client-side metrics and also by examining traces of
the internal operation of the TCP stacks.

The combination of these things has changed the
TCP development paradigm from one constrained by
fear to one where we have great freedom to inno-
vate, confident that we have the right tools to inno-
vate responsibly.

Note: Much of the code (including the RACK TCP
stack) described in this article is already available in
FreeBSD 12. A few things (such as enhanced server-
side stats and the user-space Blackbox analysis tools)
are still in the process of being upstreamed, but
should land “soon.” •

Jonathan Looney manages a development team at
Netflix responsible for maintaining the operating
system that runs on the OCAs. He is a FreeBSD com-
mitter active in the transport protocols area.


