
28 FreeBSD Journal

S E E
T E X T
O N L Y

Hey, FJ Letters Dude,
Which filesystem should I use?

—FreeBSD Newbie

Dear FreeBSD Newbie,
First off, welcome to FreeBSD. The wider com-
munity is glad to help you.

Second, please let me know who told you to
start off by writing me. I need to properly…
“thank” them.

Filesystems? Sure, let’s talk filesystems.
Discussing which filesystem is the worst is like

debating the merits of two-handed swords as
compared to lumberjack-grade chainsaws and
industrial tulip presses. While every one of them
has perfectly legitimate uses, in the hands of the
novice they’re far more likely to maim everyone
involved. It doesn’t matter what operating sys-
tem you use: FreeBSD, any BSD, Linux,
Windows, illumos, whatever. Filesystems are the
literal worst.

I mean, let’s look at memory filesystems. The
base idea, taking a chunk of memory and using
it for temporary storage, seems sound enough.
Most non-virtual computers these days have
more than enough memory that they can blow
a few gigabytes for a speedy /tmp or perhaps
even compiler scratch space. Configuring
poudriere to use memory for temporary files will
vastly accelerate your package builds.

But FreeBSD has two different memory filesys-
tems, mfs(5) and tmpfs(5). Old-fashioned MFS
blats a UFS filesystem down on top of a chunk
of memory. It’s fast, sure. But any space MFS
uses is unavailable for other use as long as the
filesystem exists. Suppose you create a 5 GB
/tmp with MFS, copy 4.9 GB to it, and erase it.
That 4.9 GB is still tied up. You can instruct MFS
to free unused memory by enabling TRIM with
tunefs(8), but nobody bothers with that.

The newer alternative, tmpfs, is specifically
designed for temporary filesystems. A default
tmpfs has a maximum size equal to the system
memory plus the system’s swap space. “How
much memory do you have? Give it to me.” Be
sure to specify the size= flag when you create a

tmpfs, or be careful to monitor tmpfs space use.
Not that you’ll configure your monitoring system
to watch tmpfs, because it’s temporary.

And no matter what, one day you’ll forget
that you used memory space as a filesystem.
You’ll stash something vital in that temporary
space, then reboot. And get really annoyed
when that vital data vanishes into the ether.

Some other filesystems aren’t actively terrible.
The device filesystem devfs(5) provides device
nodes. Filesystems that can’t store user data are
the best filesystems. But then some clever sysad-
min decides to hack on /etc/devfs.rules to
change the standard device nodes for their spe-
cial application, or /etc/devd.conf to create or
reconfigure device nodes, and the whole system
goes down the tubes.

Speaking of clever sysadmins, now and then
people decide that they want to optimize disk
space or cut down how many copies of a file
they need to maintain by reusing a partition or
dataset elsewhere on the system. FreeBSD’s
nullfs(5) lets you mount a partition multiple
times, essentially recycling the same chunk of
disk space. Folks who use a bunch of jails use
read-only nullfs mounts to have a single FreeBSD
base install support multiple jails.

FreeBSD’s unionfs(5) lets you merge multiple
filesystems. Many people successfully use union-
fs to provide custom views of a filesystem, again
for jails. Unionfs is perhaps the least popular
filesystem in the FreeBSD ecosystem though. I
know several developers who won’t go near it. 
I know others who say it’s perfectly safe. All I
know is, backups are good.

Network filesystems? Oh please. A dedicated
6GB/s SATA controller is always going to outper-
form anything that runs over gigabit Ethernet,
especially if you’re using that same network
interface to manage the host on. Yes, six gig is
more than one gig—but that comparison also
has bits versus bytes. You’re looking at a 48-fold
difference in optimal throughput. And always
remember that not all network switches are cre-
ated equal. I have a whole stack of so-called
“gigabit” switches that utterly refuse to pass
more than a quarter gigabit a second.

I must unwillingly concede that FreeBSD’s new

by Michael W LucasWeGetletters
letters@

freebsdjournal.org



iSCSI stack is rock solid. And FreeBSD’s NFS imple-
mentation is among the best in the world. Many
people use these in high-performance applica-
tions… but they’re still networked filesystems.
These people battering them in production have
top-notch network cards and switches that live up
to the hype. If you ask on the mailing lists or
forums, they’ll offer their advice.

FreeBSD has excellent support for the new
NFSv4 protocol. While earlier versions of NFS inter-
operate pretty well and have identical behavior,
NFSv4 is a whole different beast with different
semantics. You really need to do some reading
before deploying it. NFSv4 does have an extensive
access control list system that lets you perfectly
implement the worst abominations a large corpo-
ration’s IT department can dream up, so that’s
something.

You’ll occasionally see mentions of the process
filesystem, procfs(5). Many FreeBSD developers
really, really don’t want procfs to exist. When I
documented a need for procfs in the 2018 version
of Absolute FreeBSD, technical reviewer John
Baldwin rewrote ps(1) to make procfs unnecessary.
As far as I can tell, the quickest way to goad a
FreeBSD developer into action is to need /proc.

Autofs(5) was written for desktop users. It auto-
matically identifies filesystems and mounts them
for you. If you enable autofs and plug in a USB
drive, the various partitions and labels on the drive
will appear as directories in /media. Going into one
of those directories will automatically mount that
partition. Similarly, autofs makes NFS mount points
available in /net. Listing the contents of /net/file-
server displays all the NFS mount points on the
host fileserver, and going into one of those direc-
tories automatically mounts the share. It’s still
using a networked filesystem though, so it’ll
almost certainly end in tears.

In the defense of all of FreeBSD’s filesystems,

though, I must say: at least they’re not EXTFS.
Although FreeBSD supports extfs(5) as well, so
that’s not much help.

Really, the only smart move with filesystems is
not to play.

FJ Letters Dude,
I meant, I’m looking at the installer and it
wants to know if I want to use UFS or ZFS?
And George Neville-Neil said you needed
letters.

—FreeBSD Newbie

Oh!
Use ZFS, unless you can’t.

As a new user, don’t use ZFS on systems with
less than two GB of RAM. Four GB or more would
be wiser. Don’t use ZFS on non-64-bit platforms.

Some virtualization systems don’t properly label
disk images during migration from one host to
another. ZFS pools migrated on such systems
won’t boot. If you’re running on a virtualization
platform, test migration on a ZFS host before
deploying it everywhere.

And thanks for the tip. Next time I run into
GNN, we’ll discuss his unfortunate tendency to
encourage people.

Michael W Lucas (https://mwl.io) is the
author of too many books, including Absolute
FreeBSD, FreeBSD Mastery: Specialty
Filesystems, and git commit murder. 
Send your questions to letters@
freebsdjournal.com. Letters will be answered
in the order in which they amuse, annoy, or
inspire the columnist, and may be edited for
his own purposes.

Sept/Oct 2018 29

Contact walter@fbsdjournal.com

®Advertise
with Us!


