SEE
TEXT
ONLY

Jloolchain ¢

o o’ o

FreeBSD 12.0

pdate

By John Baldwin & Ed Maste

. reeBSD 12.0 continues the trend in recent
|____ FreeBSD releases of transitioning away from
obsolete GPLv2-licensed toolchain compo-
nents to modern ones. During the 12.0
development cycle this work was primarily focused
in two areas: using more of the LLVM-based tool-
chain where possible and improving support for a
modern GNU toolchain. As a result of these
changes, developers began to use features exclu-
sive to modern toolchains near the end of the
12.0 development cycle.
Expanding LLVM Toolchain Use
FreeBSD 10.0 and 11.0 used the clang C and C++
compiler as the default system compiler for the x86
and little-endian ARM architectures. However, the
object files generated by clang were linked into
binaries and executables by the GNU BFD linker. For
x86 and 32-bit ARM, the legacy GPLv2 linker in the
base system was used. For 64-bit ARM, a GPLv3
linker had to be installed from ports.

Over the past few years the LLVM developers
have made substantial improvements to the LLD
linker. FreeBSD developers have contributed to this
effort both with patches and also by using
FreeBSD’s base system and ports as a large testing
base to flesh out bugs and missing features. As a
result of this work, FreeBSD 12.0 now ships LLD as
the linker for 64-bit x86, 64-bit ARM, and ARMv7
architectures replacing the use of the GNU BFD
linker. 32-bit x86 systems also use LLD as the link-
er for compiling the base system and kernel. (For
32-bit x86 a small number of ports rely on default
options or behavior specific to GNU Id, and it is
still installed as /usr/bin/1d.)

In addition to LLD changes, support for other
architectures has improved in LLVM. Support for
both MIPS and PowerPC has matured in LLVM.
Some of these fixes have been submitted by
FreeBSD developers while others have come from

20 |FreeBSD Journal

' 4

other members of the LLVM community. While
these architectures are not yet ready to use an
LLVM-based toolchain in FreeBSD 12.0, progress is
being made. For example, 64-bit MIPS should be
able to use both clang and LLD from LLVM 7.0
once that is merged.

External GNU Toolchain

Architectures not currently supported by the LLVM
toolchain also need to transition to a more mod-
ern toolchain. Newer architectures such as RISC-V
are not supported by the GPLv2 toolchain in the
FreeBSD tree. In addition, building the base system
with a modern GNU toolchain for architectures
supported by LLVM provides users with a choice in
toolchains. Rather than maintaining a GPLv3-
licensed toolchain in the base source tree, modern
GNU toolchains are built as separate packages
using the ports framework.

GNU toolchain packages come in two varieties.
The first set of packages installs GCC and binutils
as an additional toolchain in /usr/local and
can be used for either native or cross builds. The
second set of packages builds a base system com-
piler that installs GCC and binutils into /usr as
the default toolchain.

The additional toolchain packages consist of
three separate packages for each architecture:
arch-binutils, arch-gcc, and arch-
xtoolchain-gcc. The last package depends on
the other two packages, and all of these packages
are built from ports in the devel category. Once an
external toolchain is installed, it can be used to
build kernels and the base system via the
CROSS_TOOLCHAIN make variable. The value
passed to CROSS_TOOLCHAIN is “arch-gcc”.
For example, to build a 32-bit MIPS world, one
would perform the steps in the following example.

Example: Building 32-bit MIPS World with External GCC:

pkg install mips-xtoolchain-gcc
cd /path/to/src

make buildworld TARGET ARCH=mips CROSS_ TOOLCHAIN=mips-gcc

The base system packages consist of two packages:
freebsd-binutils and freebsd-gcc. These
packages are built from the base/binutils and
base/gcc ports. Unlike the additional toolchain
packages, these packages replace components in the
base system toolchain such as /usr/bin/cc and
/usr/bin/1d. The ports for these packages (along
with pkg(8) itself) can be cross-built from a non-
native host. This will permit the Project to provide tool-
chain packages even on architectures for which the
Project does not provide full package repositories.

Even when using a GNU toolchain, many toolchain
components are still provided from other sources. For
example, all FreeBSD architectures with a modern
toolchain use 1ibc++ from LLVM as the C++ runtime
library. Utilities such as strip(8) and objcopy(8)
are provided by the ELF Tool Chain project.

FreeBSD 11 included support for additional tool-
chain packages and CROSS_TOOLCHAIN. During the
FreeBSD 12 development cycle, work has focused on
further refining this support. For example, the support
for the ——sysroot flag has been improved by both
patches and configuration changes to the toolchain
packages. In addition, the build system was updated
to be more friendly to external toolchains with
changes such as using the compiler driver to link
binaries whenever possible and supporting different
MIPS ABIs such as N32.

The base system toolchain packages have also been
under active development over the past two years.
Support has been added for the MIPS and x86 architec-
tures. The same fixes for --—sysroot support applica-
ble to the additional toolchain packages also fixed simi-
lar issues with the base system packages. While they are
not yet in a state to replace the legacy GPLv2 toolchain
for any architectures in FreeBSD 12.0, developers have
been able to build and boot a self-hosted world and
kernel on 32-bit MIPS.

Using Modern Toolchain Features

One of the benefits of moving to modern toolchains is
the ability to use new toolchain features in the base sys-
tem. Much of the work on toolchains prior to FreeBSD
12 focused on bringing on supporting a permissively-
licensed toolchain on x86 architectures as well as sup-
porting new architectures such as 64-bit ARM. However,
FreeBSD was still treating the legacy GPLv2 toolchain as
the lowest-common-denominator for deciding which
toolchain features the base system used.

Toward the end of the FreeBSD 12 development
cycle this focus has shifted. As LLD has matured,
FreeBSD has achieved the goal of a permissively-
licensed toolchain on the ARM and x86 architectures.

As a result, developers
have now begun to focus
on using (and in some
cases requiring) features
only supported by modern
toolchains.

A prominent example of this is the use of indirect
functions on x86 kernels. Indirect functions are a tool-
chain feature that permit a linker to invoke a function
when resolving a symbol to determine what address
the symbol should resolve to. This is commonly used
to provide routines optimized for different processors.
For example, a C runtime library might provide ver-
sions of string functions that use AVX or SSE instruc-
tions and choose the optimal version for the current
CPU. FreeBSD 12.0 kernels for x86 architectures make
use of this feature to provide optimized routines for
memory copies, TLB flushes, and FPU state manage-
ment. FreeBSD amd64 kernels also use indirect func-
tions to support the Supervisor Mode Access
Prevention (SMAP) security feature. Looking forward,
the FreeBSD 13 development branch has already
begun using indirect functions in the userland C run-
time library to provide optimized routines for memory
clearing and memory copies. The use of indirect func-
tions will continue to expand in the future in both
userland and the kernel.

Conclusion

FreeBSD 12.0 marks another milestone in toolchain
development. The ARM and x86 architectures now
use modern, permissively licensed compilers and link-
ers. Support for external GCC toolchains is maturing.
FreeBSD 13 will no longer use GPLv2 bits in the base
system toolchain on any architectures. As a result,
FreeBSD developers will accelerate the adoption of
new toolchain features in the future. This will range
from expanding the use of indirect functions, to
enabling new features such as link-time optimization
(LTO), build identifiers, compressed debug informa-
tion, and more. o

JOHN BALDWIN is a systems software developer. He has
directly committed changes to the FreeBSD operating system for
19 years across various parts of the kernel (including x86 plat-
form support, SMP, various device drivers, and the virtual mem-
ory subsystem) and userspace programs. In addition to writing
code, John has served on the FreeBSD core and release engi-
neering teams. He has also contributed to the GDB debugger
and LLVM. John lives in Concord, California, with his wife,
Kimberly, and three children: Janelle, Evan, and Bella.

ED MASTE manages project development for the FreeBSD
Foundation and works in an engineering support role with the
University of Cambridge Computer Laboratory. He is also a mem-
ber of the elected FreeBSD core team. Aside from FreeBSD and
LLVM projects, he is a contributor to several other open-source
projects. He lives in Kitchener, Canada, with his wife, Anna, and
sons, Pieter and Daniel.

Nov/Dec 2018 | 21

