
By Serapheim Dimitropoulos

18 FreeBSD Journal

In March of this year (2018), Alexander Motin
(mav@freebsd.org) ported the Pool Checkpoint
feature of OpenZFS from Illumos to FreeBSD. A

pool checkpoint can be thought of as a “pool-
wide snapshot” that captures the entire state of
the pool at the time the checkpoint is created,
allowing the user to revert the entire pool back to
that state or discard it. The generic use cases are
administrative tasks, like OS upgrades, that involve
actions that change or destroy ZFS state and meta-
data. Examples of such actions are: enabling new
pool features, changing properties of datasets, or
destroying snapshots and filesystems. Before
undertaking such actions, administrators can cre-
ate a checkpoint of their pool and then apply their
changes. If something goes wrong with the
upgrade, the administrator can then rewind back
to the checkpoint as if the actions had never been
taken. In the same way a snapshot can help you
return user data to a previous state, the check-
point can help you return the ZFS pool to a previ-
ous state.

There are already two tutorials online demon-
strating how to use this feature, and a block com-
ment in the source code that gives a high-level
overview of its implementation (see the References
box). This article lies somewhere in the middle, giv-
ing a high-level description of what happens under
the hood during each administrative operation.

Checkpointing a Pool
In ZFS we keep track of changes over time with
Transaction Groups (aka TXGs). During each TXG,
ZFS accumulates changes in memory and, when
certain conditions are met, it syncs those changes
to disk, then opens the next TXG. Each data block

records the TXG during which it was created,
called its birth TXG. Birth TXGs are important for
the pool checkpoint feature because they help us
differentiate between blocks created before and
after a checkpoint. Finally, a TXG’s last step when
syncing to disk is writing the new uberblock to the
beginning and end of each disk in an area called
the ZFS label, which is different from the EFI label.
Each uberblock is the root of the tree of the entire
state of the pool for that TXG. Uberblocks are
used during pool import as a starting point to find
the latest version of all of the pool’s data and
metadata. 

Whenever an administrator checkpoints a pool
(with the “zpool checkpoint” command), ZFS
copies the uberblock of the current TXG to an area
within the pool’s state called the Meta-Object Set
(MOS). When this change is synced to disk, the
uberblocks from subsequent TXGs reference the
“checkpointed” uberblock through the MOS.

The Lifetime of a Block in a
Checkpointed Pool
When a checkpoint exists, the process of allocating
new blocks stays the same, but the process of
freeing blocks is different. We can’t free blocks
that belong to the checkpoint, because we want
to be able to rewind back to that point in time. At
the same time, we can’t stop freeing blocks entire-
ly, because that would fill up the pool. Thus, every
time we are about to free a block, we look at its
birth TXG and compare it to the TXG of the
“checkpointed” uberblock that we saved in the
MOS. If the block was born at or before the TXG
of the checkpointed uberblock, it means that the
block is part of the checkpoint (i.e., it is referenced

S E E
T E X T
O N L Y

C H E C K P O I N T



Nov/Dec 2018 19

by the checkpointed uberblock). These “checkpoint-
ed” blocks are never actually freed. Instead, we add
their ranges to lists on-disk we call checkpoint
spacemaps (there is one per vdev) and leave their
segments marked as allocated so they are not
reused by the pool. Blocks whose birth TXGs are
after the checkpoint’s TXG, are not part of the
checkpointed state and can be freed normally. 

Rewinding to the Checkpoint
If administrators want to rewind back to the check-
point, all they need to do is to export and then re-
import the pool with the rewind option 
(“zpool import --rewind-to-check-
point”). In this case, the import process takes
place as usual, but with one additional step. ZFS first
looks at the current uberblock and from that it finds
the checkpointed uberblock in the MOS. Then it
uses the checkpointed uberblock instead of the cur-
rent uberblock for the import process, effectively
rewinding the pool back to the checkpointed state.
Once the import process is done, the rewind is com-
plete. The checkpoint spacemaps no longer exist as
they were created after the checkpointed uberblock
(which is now the current uberblock). For the same
reason, there is no checkpoint uberblock in the
MOS. This means that after rewinding there is no
additional cleanup and the pool no longer has a
checkpoint.

It is also possible to import a checkpoint read-only
to access the pool in the state it existed at the time
of the checkpoint without actually undoing all of
the changes that have happened since the check-
point was created. This can allow the administrator
to recover specific data or a filesystem that was
destroyed without rolling back the entire pool.

Discarding the Checkpoint
If administrators decide to get rid of the checkpoint,
they run the discard command 

(“zpool checkpoint --discard”). The com-
mand instructs ZFS to get rid of the checkpointed
uberblock from the MOS. At that point, the pool is
considered to no longer have a checkpoint, which
allows blocks to be freed normally regardless of their
birth TXG. ZFS will also free all the previously record-
ed ranges from the checkpoint spacemaps—the
blocks that we couldn’t actually free because they
were referenced by the checkpointed uberblock. 
The number of these blocks can be quite large
depending on how long the checkpoint has existed
and how many changes have been made to the
pool. Freeing them all in a single TXG would be
expensive. Instead, ZFS spawns a thread that frees
them over the course of multiple TXGs by prefetch-
ing them into memory in chunks and freeing one
chunk per TXG.

Acknowledgments
The development of this feature would not have
been possible without the help of my colleagues
from Delphix, especially Dan Kimmel, who started
the initial prototype with me, and Matt Ahrens for
guiding me every step of the way. I’d also like to
thank Alexander Motin for porting the feature to
FreeBSD, and Marius Zaborski for promoting it. •

.

Serapheim Dimitropoulos is a 
software engineer working on 
ZFS at Delphix. His main 
contributions to the project 
are the Log Spacemap and Pool 
Checkpoint features. When not 
programming, Serapheim spends 
his time playing soccer, 
salsa dancing, and playing 
classical guitar.

R E F E R E N C E S
Serapheim's ZPool Checkpoint tutorial. http://sdimitro.github.io/post/zpool-checkpoint/

Marius’s ZPool Checkpoint tutorial. http://oshogbo.vexillium.org/blog/46/

Implementation Overview Block Comment in the source. https://github.com/freebsd/freebsd/
blob/master/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/spa_checkpoint.c


