
S E E T E X T O N L Y

10 FreeBSD Journal

W hen someone mentions FreeBSD, you
probably think about your servers and
NAS. Without a doubt, FreeBSD is a

great operating system for those purposes.
However, there are some myths out there that
FreeBSD isn't good for developers and that if you
want to do software development on or of
FreeBSD, you should get a Mac. The truth is that
FreeBSD is a complete operating system and
everyone from system administrators to software
developers to accountants can use it for daily jobs.
In this article let’s look into FreeBSD as software
developers.

Languages
The most important question for software devel-
opers is whether their language is supported by
FreeBSD. Well, all the popular languages are sup-
ported by FreeBSD. There is no limit, really. Do you
want to do your shiny new web in Node.js, PHP,
or Python? FreeBSD supports all of them. If you
are looking more for low-level programming like
Go or Rust, FreeBSD has it. Are you classier than
that? Then you can find a new version of clang
and gcc in the ports. You can even work with Java
through OpenJDK or C# through Mono.

What is great is that in many cases the native
FreeBSD package manager pkg(1) permits you to
install the required compiler. In the case of PHP,
Ruby, or Python, many packages are also provided
by pkg. If you want to install pygame for Python,
you can simply type:
pkg install py{27,36}-game
This allows you to manage all the packages you

have installed in your operating system. It’s easy
and clean. If, for some reason, you don’t like this
approach, you can still use pip as always. It is the

same with WordPress. If you run the command
below you’ll be ready to go:
pkg install wordpress

The full list of packages with language compilers
and interpreters can be found by executing:
pkg search lang/
It’s also great that all packages are up-to-date.

The repology project (https://repology.org/
repositories/statistics/newest) is doing an analysis
of a huge number of package repositories and
other sources comparing package versions across
them. The conclusion is that FreeBSD has one of
the newest ports. Its packages are far more updat-
ed, for example, than the newest version of
Ubuntu. If you are looking for an up-to-date lan-
guage infrastructure, FreeBSD is your choice.

Developer’s Environment
Another important question for software devel-

opers is whether their favorite IDE will work on
FreeBSD. When we talk about a developer envi-
ronment, you probably associate Unix with vim
and emacs. That's true, and you can use them
with FreeBSD, although you will also find more
modern IDEs for your work like:

• Eclipse
• Sublime Text
• Pycharm (freeware and commercial version)
• IntelliJ (ultimate and community)
If your IDE does not support FreeBSD directly,

you can always try to run them using Linuxulator,
a Linux compatibility layer in FreeBSD. You also
don't need to worry about your code version con-
trol system. You will find all popular, open-source
VCS like git, mercurial, or svn. You also may use
commercial ones like perforce.

There is no better way to maintain your envi-

by Mariusz Zaborski

FreeBSD
for Developers

•

Jan/Feb 2019 11

ronment and test your software than jails. If you
want to have a few versions of your application for
different customers or multiple databases and so
on, then jails are what you want to use. You can
also combine them with ZFS and easily upstream
your changes to production. These days, managing
jails is easier than ever by using iocage or ezjail.

Sometimes jails are not enough and we have to
work with different operating systems. FreeBSD also
has this covered. If you are looking for lightweight
virtualization of any modern operating system like
Windows, Linux, OpenBSD, NetBSD or FreeBSD
bhyve is the way to go.

Contain Directory Madness
Where do you install your software in Linux:
/usr/bin, /bin, /usr/local/bin? Or maybe bin is a sim-
ple symlink to /usr/bin and everything is a total
mess? The administrative binaries always land in the
sbin; the normal binaries land in bin. Also, the hier-
archy of directories is clean and understandable:
• /bin and /sbin are the FreeBSD-specific binaries
shipped with the operating system that are required
for minimal work with the system,
• /usr/bin and /usr/sbin are the FreeBSD-specific
binaries shipped with operating systems, and
• /usr/local/bin and /usr/local/sbin are directories
where all your third-party software will land.

Additionally, you can read about the whole filesys-
tem hierarchy on the manpage here(7). Again,
FreeBSD wins with its simple and clean solution.

Look into Your Program
One of the best tools for developers, which is lack-
ing in other operating systems, is DTrace. We don’t
have space to describe all functionalities of DTrace

but once I started using DTrace, I don’t know how I
coped without it. DTrace is a dynamic tracing frame-
work and was originally developed by Sun
Microsystems. Using a few lines of the D script, we
are able to see a current stack of the program, ana-
lyze the performance, trace the input of the func-
tions, and much, much more.

The real power of DTrace is in the few scripts
written by Brendan Gregg (https://github.com/
brendangregg/FlameGraph) that allow you to gener-
ate flame graphs. Flame graphs are a visualization
of traced software allowing the most frequent code
paths to be identified. You can use these to trace
many things, starting with your software, FreeBSD
kernel, and ending with third parties. Everything
that you need is a binary with some symbols. To use
it, you do not need to stop your program or recom-
pile it. We recently used DTrace on the PostgreSQL
database to trace why the insert was taking so
much time. Thanks to DTrace, we easily found the
problem with table settings and were able to fix it.
This is a big advantage over other operating systems
for software developers, and DTrace should be in
your toolbox.

Other tools that may be useful for you when
developing low-level applications, and which are
FreeBSD-specific, are:
• procstat – a powerful tool that allows you to get
a lot of process information
• ktrace/kdump – an alternative for strace(1),
which allows you to print a list of called syscalls
• pmccontrol – control hardware performance
monitoring counters
• pmcstat – performance measurement with per-
formance monitoring hardware

In the case of low-level debugging by default,
you will not find a gdb in the base system any

Example of a flame graph generated from PostgreSQL, generated using output from DTrace one liner:
dtrace -x ustackframes=100 -n ‘profile-5000 { ustack(); }` -p PID -o output

more, but you can use a great alternative lldb
from the LLVM project, which we encourage you
to give a try.

Some Great APIs That the World
Needs to Catch Up With
FreeBSD is a pioneer in many technologies. It was
the first operating system to catch up with ZFS—
which took the Linux world ages. FreeBSD first saw
the potential in containers a long time before
docker—developing chroot and jails. FreeBSD is
POSIX compatible, but it also introduces or inte-
grates many great APIs that are not available in
many popular operating systems.

All operating systems implement poll and select,
which have problems with scalability. We also see
epool, which, instead of solving problems, intro-
duces some. FreeBSD took a different direction
and introduced kqueue(1). kqueue provides effi-
cient input and output event pipelines between
the kernel and userland. kqueue is much more
efficient, especially when polling for events on a
large number of file descriptors.

In talking about descriptors, we should also
mention process descriptors—a new way to add a
handle (descriptor) to the process. Process identi-
fiers (PID) used by many operating systems are not
reliable. Between checking the status of process
and sending signals, many things can occur in the
operating system, and, in theory, the PID may be
used by another process. Process descriptors solve
those problems by giving you a reliable handle to
add to the process. If the process is terminated,
you still will have a handle to inform you about it.

And there is the FreeBSD sandboxing technique
called Capsicum. Capsicum is a lightweight OS
capability and sandbox framework. Capability-
based security means that processes can only per-
form actions that have no global impact. Processes
cannot open files by their absolute path or cannot
open network connections. The idea is to protect
your application with the process privilege separa-

tion in mind.
To secure your applications, you may also con-

sider using CloudABI (https://github.com/NuxiNL/
cloudabi). CloudABI takes a POSIX function and
adds capability-based security and removes every-
thing that's incompatible with that. This forces
software developers to use very specific sets of
functions in their applications but increases the
security of the application.

FreeBSD is working on many interesting tech-
nologies that in the future may be standard in
other operating systems. If you want to be up-to-
date you should look into this OS.

Documentation
FreeBSD is known to have great documentation. In
the case of software development, this is no differ-
ent. How many times have you googled for an
ASCII table? In FreeBSD, by default, you have a
manpage for it: ascii(7). The same goes for archi-
tecture/language-specific things like:
• arch(7) – architecture-specific details like size of
the pointer, numbers, or pages.
• operator(7) – C and C++ operator precedence
and order of evaluation.
• zstyle(9) – the best C style you will find –
FreeBSD has used it for decades.
• hier(7) – to understand Unix filesystems layout.

The Sky's the Limit
FreeBSD has a lot of interesting features like jails,
bhyve, ZFS, and DTrace that make life easier for
software developers. You also will find very useful
documentation in the system. This is not to men-
tion the large amount of third party software that
is just waiting to be used. One of the great ways
of learning new languages is to create some
games in it—and, of course, you can do this on
FreeBSD! So, don’t wait a moment longer—config-
ure your new developer box on FreeBSD! •

12 FreeBSD Journal

MARIUSZ ZABORSKI is a QA&Dev manager at Fudo Security. He has been the proud
owner of the FreeBSD commit bit since 2015. Mariusz's main areas of interest are OS
security and low-level programming. At Fudo Security, Mariusz leads a team that is
developing the most advanced solution for monitoring, recording, and controlling
traffic in IT infrastructure. In 2018, Mariusz organized the Polish BSD User Group.

In his free time, he enjoys blogging at https://oshogbo.vexillium.org.

