
8 FreeBSD Journal

This is a short introduction to setting up a Java
development environment on your computer
running FreeBSD 12.0 or other desktop operating
systems that derive from it — such as GhostBSD
or Trident desktop.

By Ashik
Salahudeen

Getting Started with

Java
Development
in FreeBSD/GhostBSD

What Is Java Anyway?
Java is a general-purpose, object-oriented programming language developed at
Sun Microsystems. It was first released in 1996. Its primary motto was “Write
once, run everywhere,” which makes it possible for the developers to write
Java code, compile it into byte code, and be able to execute it on any operat-
ing system that had a Java runtime. So, someone can write code on Windows,
but execute it on FreeBSD or GNU/Linux servers. Over time, Java has become
extremely popular, and is a very reliable choice for writing server-side applica-
tions as well as Android applications.

Java on the FreeBSD Platform
Oracle Corporation bought Sun and is now owner of the official Java runtime
and development kit implementations. They provide implementations for
Windows, Mac OSX, and Linux operating systems. The official reference imple-
mentation is open-sourced under GPLv2 (with a linking exception), and hence
it is possible to have OpenJDK implementations for FreeBSD.

The current long-term support version of Java is Java 11, released in
September 2018. There are no builds for FreeBSD yet. The previous stable
release was Java 8 released in March 2014 and builds for this version exist. The
rest of this article is based on Java 8 openjdk.

Getting Started: Install the Java Development Kit
To write applications in Java, you will need a Java Development Kit that pro-
vides a compiler, a runtime, and a standard library.

Thankfully, this is available as a pre-built package, and for development pur-
poses, the binary package is sufficient. Install this using the following com-
mand (as root):

pkg install openjdk8

This should not take a long time, and you may verify that the installation is
successful by invoking that Java compiler from a terminal.

S E E T E X T O N L Y

$ javac -version
javac 1.8.0_181

Editing Java Code
You can edit Java code using a plain text editor, but
because of how the language operates, it gets cum-
bersome very soon. Almost all Java programmers use
an IDE to edit their code. There are several editors
available and some of them are commercial. The fol-
lowing is a list of recommended IDEs:

• Intellij IDEA Community Edition
IntelliJ is an excellent IDE, available as a binary pack-
age and is released under the Apache20 license.
Install it using:

pkg install intellij

The makers of this IDE, Jetbrains, also make a com-
mercial (paid) version called IntelliJ Ultimate, which
has more features. For all practical purposes, the com-
munity edition should suffice.

• Netbeans
Netbeans is another well-built IDE that has been
around for a long time. It is also released under the
Apache20 license and is available as a pre-built pack-
age. Install it using:

pkg install netbeans

• Eclipse
Eclipse is another popular IDE, available under the
Eclipse Public License. It is also available as a pre-built
package. Install it using:

pkg install eclipse

Some Generic Configuration
to Make Things Easier
In general, setting some environment variables/config-
urations will make Java development easier. The fol-
lowing is a brief list:

• Java Home
This variable specifies the location of your JDK/JRE. It
is useful to set this in your environment variable via
the .profile file. Add the following line:

JAVA_HOME=/usr/local/openjdk8

• Maven Home
Maven is a popular project management tool for Java
projects. It is a pure Java application and is available
via the binary packages. The project gets updated

often though, so if you want to get the latest Maven
binary, it is still best to download it from the project
site directly. If you choose to do this, set up the loca-
tion to Maven’s installation directory using the envi-
ronment variable M2_HOME. This path is the location
of “bin” directory in Maven’s installation.

M2_HOME=/path/to/apache-maven-3.x.0/

• Intellij – Fix Font Rendering
If the fonts in the IDE look fuzzy, you can fix the
problem by passing in the following arguments to the
launcher script. Intellij makes it easy via the “Help >
Edit Custom VM Options” menu. Paste the following
in the text file that opens up. Close the IDE and
launch it again.

-Dsun.java2d.renderer=sun.java2d.
marlin.MarlinRenderingEngine

-Dawt.useSystemAAFontSettings=on
-Dswing.aatext=true
-Dsun.java2d.xrender=true

• Netbeans – Fix Font Rendering
Netbeans’ font rendering can be fixed by passing the
same arguments, but it does not provide an easy way
to do this. As root (or sudo) open “/usr/local/
netbeans-8.2/etc/netbeans.conf” in a text editor. If
you are on a newer version of Netbeans, just change
“8.2” in the above to that version. Find the line that
sets the variable “netbeans_default_options” and
append the following to the end of the option string.
It is one long line.

-J-Dswing.aatext=true -J-Dawt.use
SystemAAFontSettings=on -J-Dsun.
java2d.renderer=sun.java2d.marlin.
MarlinRenderingEngine -J-Dsun.java2d.
xrender=true

Summary
These things should get you set up for developing
Java applications, but this article does not go into
detail about writing a Java program or customizing
the IDEs or various options you can pass to the JVM
when you run it. You can contact me on
aashiks@gmail.com if you have queries. •

Jan/Feb 2019 9

ASHIK SALAHUDEEN has been working
with computers for about 18 years,
mostly with Unix-like operating systems
and open source tech. He runs the engi-
neering team at Accordium and works
with other FOSS communities during his
spare time—primarily the Indic language
computing group, Swathanthra
Malayalam Computing.

