
4 FreeBSD Journal

Debuggers are tools used to inspect the state of processes in a
system. For running processes, debuggers can examine the values
of variables as well as control process execution. For processes that
have terminated abnormally due to a bug, debuggers can parse a
process core dump generated by the kernel to inspect
the state of the process at the time of the crash.

M
ost debuggers support a base set of features such as examining
the value of global and local variables, generating stack traces,
interrupting process execution via breakpoints, and controlling
process or thread execution via stepping. This article focuses on

some of the other features supported by modern versions of the GNU
debugger (gdb) on FreeBSD. Some of these features are only supported in
the latest version of gdb (8.3 at the time of writing), while other features
are available in older versions.

To get started, install an up-to-date version of gdb. The simplest way is
to install the pre-built package by running pkg install gdb.
Alternatively, gdb can be built from source via the devel/gdb port
(https://www.freshports.org/devel/gdb).

The info proc Command
The info proc command can be used to examine process state beyond
memory and threads. By default, info proc provides basic information
such as the process ID and command line of a process. However, addition-
al information is available via subcommands including the list of open file
descriptors via info proc files and the list of active memory map-
pings via info proc mappings. In the first two examples, the com-
mand wc /usr/src/bin/ls/ls.c is being executed under the debug-
ger. Execution is paused inside the cnt function with the target file open.
The first example shows the information provided by the basic command. The
second example shows the list of open files and includes the offset of the file
descriptor for ls.c showing how much of the file the wc process has read.

Debugging
with GDB on FreeBSD
by John Ba ldwin

March/April 2019 5

While all the information available via info proc is also provided by other
utilities such as ps(1) (https://www.freebsd.org/cgi/man.cgi?query=ps(1)).and
procstat(1) (https://www.freebsd.org/cgi/man.cgi?query=procstat(1)), the info
proc command permits a user to access them from within the debugger with-
out having to open a separate window. These commands can also be used on
a cross-debugger hosted on a non-FreeBSD OS while examining a core dump.

More detailed information on the info proc command and its subcommands
can be found in the Process Information section (https://sourceware.org/
gdb/current/onlinedocs/gdb/Process-Information.html) of the Debugging with
GDB manual (https://sourceware.org/gdb/current/onlinedocs/gdb/).

Example 1: info proc
(gdb) info proc
process 85146

cmdline = '/usr/bin/wc /usr/src/bin/ls/ls.c'

cwd = '/usr/home/john'

exe = '/usr/bin/wc'

Example 2: info proc files
(gdb) info proc files
process 85153

Open files:

FD Type Offset Flags Name

text file - r--------- /usr/bin/wc

ctty chr - rw------- /dev/pts/20

cwd dir - r--------- /usr/home/john

root dir - r--------- /

0 chr 0xac82 rw------- /dev/pts/20

1 chr 0xac82 rw------- /dev/pts/20

2 chr 0xac82 rw------- /dev/pts/20

3 file 0x63dd r--------- /usr/src/bin/ls/ls.c

Intercepting System Calls
GDB supports a special class of breakpoints called catchpoints. Catchpoints
permit the user to pause execution when certain types of events occur dur-
ing execution. One of the catchpoint types supported by GDB is a system
call catchpoint. A system call catchpoint pauses execution on entry and exit
from system calls.

System call catchpoints are created using the catch syscall com-
mand. If no arguments are specified, execution will pause on entry and exit
from all system calls. More specific catchpoints can be defined by specifying
a list of system calls as arguments to the command. System calls can be
named either by name or number. For example, catch syscall write

6 FreeBSD Journal

sets a catchpoint that will pause execution on entry and exit from
the write(2) (https://www.freebsd.org/cgi/man.cgi?query=write(2))
system call.

Once a system call catchpoint has been created, it can be
managed using other commands used with breakpoints. The
info breakpoints command will list catchpoints along with other
breakpoints. Catchpoints are removed via the delete command.
Example 3 intercepts a write(2) (https://www.freebsd.org/cgi/
man.cgi?query=write(2)) system call of a ls(1)
(https://www.freebsd.org/cgi/man.cgi?query=ls(1)) process.

Example 3: Catching a System Call
% gdb -q --args /bin/ls -l /bin/sh
Reading symbols from /bin/ls...
Reading symbols from /usr/lib/debug//bin/ls.debug...
(gdb) catch syscall write
Catchpoint 1 (syscall 'write' [4])
(gdb) info breakpoints
Num Type Disp Enb Address What
1 catchpoint keep y syscall "write"
(gdb) run
Starting program: /bin/ls -l /bin/sh

Catchpoint 1 (call to syscall write), _write () at _write.S:3
3 PSEUDO(write)
(gdb) c
Continuing.
-r-xr-xr-x 1 root wheel 168880 Nov 17 17:38 /bin/sh

Catchpoint 1 (returned from syscall write), _write () at _write.S:3
3 PSEUDO(write)
(gdb) c
Continuing.
[Inferior 1 (process 24875) exited normally]

For FreeBSD, GDB recognizes compatibility system calls. Catching a
system call by name that has compatibility system calls for older ver-
sions will catch all versions of that system call. For example, several sys-
tem calls moved to new numbers in FreeBSD 12 due to changes in
struct stat. The existing system calls continue to use the old layout
of struct stat but were renamed to add a freebsd11_ prefix.
When one of these system calls is caught by name, GDB catches both
since applications might use either version. In Example 4, catching the
fstat(2) (https://www.freebsd.org/cgi/man.cgi?query=fstat(2)) system
call registers catchpoints for both versions.

March/April 2019 7

Example 4: Catch fstat(2)
(gdb) catch syscall fstat
Catchpoint 1 (syscalls 'freebsd11_fstat' [189] 'fstat' [551])
(gdb) info breakpoints
Num Type Disp Enb Address What
1 catchpoint keep y syscalls "freebsd11_fstat, fstat"

Debugging Forks
Many programs create new processes via the fork(2)
(https://www.freebsd.org/cgi/man.cgi?query=fork(2)) and vfork(2)
(https://www.freebsd.org/cgi/man.cgi?query=vfork(2)) system calls. GDB
provides several facilities for working with child processes created as a
result of a fork. The following examples will demonstrate these facilities
using the test program from Listing 1.

Listing 1: forktest.c
#include <sys/types.h>
#include <sys/wait.h>
#include <err.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int
main(void)
{

pid_t pid, wpid;

pid = fork();
if (pid == -1)

err(1, "fork");
if (pid == 0) {

printf("I'm in the child\n");
exit(1);

}
printf("I'm in the parent\n");
wpid = waitpid(pid, NULL, 0);
if (wpid < 0)

err(1, "waitpid");

return (0);
}

Fork Follow Mode
When a debugged process forks, GDB has to choose which process to
continue debugging: the original (parent) process, or the new (child)
process. By default, GDB follows the parent process letting the child
process run freely after a fork as in Example 5. Note that the child process
writes its output to the console and exits even while the parent process is
paused in the debugger.

Example 5: Following the Parent
(gdb) start
Temporary breakpoint 1 at 0x201354: file forktest.c, line 13.

Starting program: /usr/home/john/work/johnsvn/test/forktest/forktest

Temporary breakpoint 1, main () at forktest.c:13

13 pid = fork();

(gdb) n
[Detaching after fork from child process 25302]

I'm in the child

14 if (pid == -1)

(gdb) p pid
$1 = 25302

(gdb) n
20 printf("I'm in the parent\n");

(gdb) c
Continuing.

I'm in the parent

[Inferior 1 (process 25297) exited normally]

GDB uses the follow-fork-mode setting to determine which process
to follow after a fork. To follow the child process instead of the parent,
use the “child” setting. To restore the default behavior, use the “parent”
setting. The setting is changed via the set follow-fork-mode com-
mand. The show follow-fork-mode command displays the current
setting. Example 6 executes the test program again but follows the child
process instead of the parent process.

Example 6: Following the Child
(gdb) set follow-fork-mode child
(gdb) start
Temporary breakpoint 1 at 0x201354: file forktest.c, line 13.
Starting program: /usr/home/john/work/johnsvn/test/forktest/forktest

Temporary breakpoint 1, main () at forktest.c:13
13 pid = fork();

C o n t i n u e s n e x t p a g e

(gdb) n
[Attaching after LWP 100857 of process 26342 fork to child LWP 101958 of process 26347]
[New inferior 2 (process 26347)]
[Detaching after fork from parent process 26342]
[Inferior 1 (process 26342) detached]
I'm in the parent
[Switching to LWP 101958 of process 26347]
main () at forktest.c:14
14 if (pid == -1)
(gdb) p pid
$1 = 0
(gdb) n
17 printf("I'm in the child\n");
(gdb) c
Continuing.
I'm in the child
[Inferior 2 (process 26347) exited with code 01]

Detach on Fork
In addition to deciding which process to follow after a fork, GDB provides
a choice on how to treat the non-followed process. By default, GDB
detaches from the non-followed process allowing it to run freely after the
fork. The detach-on-fork setting can be changed to “no” to change
this behavior. When it is set to “no”, GDB stays attached to both process-
es and leaves both processes paused after a fork.

To manage the two processes, GDB’s multiprocess support
(https://sourceware.org/gdb/current/onlinedocs/gdb/Inferiors-and-
Programs.html#Inferiors-and-Programs) is used. In GDB terminology, each
process is associated with an “inferior”. The info inferiors com-
mand is used to list the active inferiors. The inferior command is used
to switch between inferiors. Threads from separate processes are also dis-
played in the info threads command. Switching to a thread in differ-
ent inferior is another way to switch inferiors. After a fork, the inferior of
the followed process is set as the current inferior.

Example 7 provides one more example of the test program. This time,
detach-on-fork is disabled leaving both processes paused after the
fork. The default fork follow mode is used, so GDB remains focused on
the parent process after the fork. Note that the child process is stopped at
the first instruction after the fork.

Example 7: Staying Attached after Fork
(gdb) set detach-on-fork off
(gdb) start
Temporary breakpoint 1 at 0x201354: file forktest.c, line 13.

E x a m p l e 6 c o n t i n u e d f r o m p a g e 8

C o n t i n u e s n e x t p a g e

Starting program: /usr/home/john/work/johnsvn/test/forktest/forktest

Temporary breakpoint 1, main () at forktest.c:13
13 pid = fork();
(gdb) n
[New inferior 2 (process 26828)]
14 if (pid == -1)
(gdb) p pid
$1 = 26828
(gdb) info inferiors
Num Description Executable
*1 process 26823 /usr/home/john/work/johnsvn/test/forktest/forktest
2 process 26828 /usr/home/john/work/johnsvn/test/forktest/forktest

(gdb) inferior 2
[Switching to inferior 2 [process 26828]

(/usr/home/john/work/johnsvn/test/forktest/forktest)]

[Switching to thread 2.1 (LWP 101425 of process 26828)]

Reading symbols from

/usr/home/john/work/johnsvn/test/forktest/forktest.debug...done.

Reading symbols from /usr/lib/debug/lib/libc.so.7.debug...done.

Reading symbols from /usr/lib/debug/libexec/ld-elf.so.1.debug...done.

#0 _fork () at _fork.S:3

3 PSEUDO(fork)

Warning: the current language does not match this frame.

(gdb) n
main () at forktest.c:14

14 if (pid == -1)

(gdb) p pid
$2 = 0

(gdb) info threads
Id Target Id Frame

1.1 LWP 100970 of process 26823 main () at forktest.c:14

*2.1 LWP 101425 of process 26828 main () at forktest.c:14

(gdb) c
Continuing.

I'm in the child

[Inferior 2 (process 26828) exited with code 01]

(gdb) thread 1.1
[Switching to thread 1.1 (LWP 100970 of process 26823)]

#0 main () at forktest.c:14

14 if (pid == -1)

(gdb) c
Continuing.

I'm in the parent

[Inferior 1 (process 26823) exited normally]

E x a m p l e 7 c o n t i n u e d f r o m p a g e 9

10 FreeBSD Journal

Catching Forks
GDB provides one final set of tools to aid with debugging forking
processes: a set of catchpoints for events related to forks. The
catch fork command installs a catchpoint for fork invocations that are
not from vfork(2)(https://www.freebsd.org/cgi/man.cgi?query=vfork(2)).
The catchpoint triggers when the followed process returns from forking.
The catch vfork command installs a catchpoint for fork invocations
from vfork(2). Finally, the catch exec command installs a catchpoint
for returns from the exec family of system calls. Example 8 follows a shell
process that forks a child process to execute a command.

Example 8: Catching Fork and Exec
% gdb -q /bin/sh
(gdb) catch fork
Catchpoint 1 (fork)
(gdb) catch exec
Catchpoint 2 (exec)
(gdb) set follow-fork-mode child
(gdb) run
Starting program: /bin/sh
$ ls -l /dev/null; exit

Catchpoint 1 (forked process 27644), _fork () at _fork.S:3
3 PSEUDO(fork)
(gdb) c
Continuing.
[Attaching after LWP 100469 of process 27639 fork to child LWP 101734 of
process 27644]
[New inferior 2 (process 27644)]
[Detaching after fork from parent process 27639]
[Inferior 1 (process 27639) detached]
process 27644 is executing new program: /bin/ls

Thread 2.1 hit Catchpoint 2 (exec'd /bin/ls), .rtld_start ()
at /usr/src/libexec/rtld-elf/amd64/rtld_start.S:33

33 xorq%rbp,%rbp# Clear frame pointer for good form
(gdb) c
Continuing.
crw-rw-rw- 1 root wheel 0xf Feb 2 18:00 /dev/null
[Inferior 2 (process 27644) exited normally]

For more information on using GDB to debug forks, see the Debugging
Forks (https://sourceware.org/gdb/current/onlinedocs/gdb/Forks.html) chap-
ter of the GDB manual.

March/April 2019 11

Debugging C++ STL Classes
For some data types, the raw layout of a data structure might not corre-
spond to the use and representation of that structure in the source code.
This can be especially true of C++ Standard Template Library (STL) classes.
To aid with inspecting these structures, GDB permits python scripts to pro-
vide two types of helper classes: pretty printers (https://sourceware.org/
gdb/current/onlinedocs/gdb/Pretty-Printing-API.html#Pretty-Printing-API) and
xmethods (https://sourceware.org/gdb/current/onlinedocs/gdb/Xmethods-In-
Python.html#Xmethods-In-Python).

Pretty printers override the default display of objects by the print com-
mand. Each pretty printer is associated with one or more C++ classes. They
can also be associated with templated classes. For example, a pretty printer
for std::vector can display the contents of the vector as an array.

Xmethods permit python scripts to simulate the effects of inlined C++
class methods. When evaluating expressions, GDB will call functions
defined in the debugged program if needed to evaluate an expression.
This includes calling C++ operator overloading functions. However, if
methods are inlined, as is common with templated classes, there is no dis-
crete function symbol for GDB to call. As a result, attempting to use these
functions or operators in an expression fails. Xmethods can be used to
bridge this gap. For example, an xmethod can be used to provide
operator[] for std::vector objects permitting a user to directly
index a vector with the same syntax used in the original C++ source.

The LLVM C++ library used by FreeBSD does not include a set of python
scripts providing pretty printers and xmethods for commonly-used C++ STL
classes. However, an initial set of scripts are available at
(https://github.com/bsdjhb/libcxx-gdbpy). At the time of writing, these
scripts have limited support for std::string, std::unique_ptr, and
std::vector. Examples 9 and 10 compare examining a std::vector of
integers without and with these scripts installed. These python scripts are
included by the devel/gdb port by default in versions 8.2.1_1 and newer.

Example 9: std::vector Without Python Scripts
(gdb) p vector
$1 = {<std::__1::__vector_base<int, std::__1::allocator<int> >> =

{<std::__1::__vector_base_common<true>> = {<No data fields>}, __begin_ =

0x800244000,

__end_ = 0x80024400c,

__end_cap_ = {<std::__1::__compressed_pair_elem<int*, 0, false>> = {

__value_ = 0x800244010},

<std::__1::__compressed_pair_elem<std::__1::allocator<int>, 1, true>> =

{std::__1::allocator<int>> = {<No data fields>}, <No data fields>}, <No data fields>}}, <No data fields>}

12 FreeBSD Journal

C o n t i n u e s n e x t p a g e

(gdb) p vector[1]
Could not find operator[].

Example 10: std::vector With Python Scripts
(gdb) p vector
$1 = std::vector of length 3 = {4, 5, 6}

(gdb) p vector[1]
$2 = 5

Cross Debugging with a System Root
The GDB package from ports is built by default as a cross-debugger. This
means that it is able to examine binaries and core dumps from other
architectures and other operating systems. For example, one can examine
a process core dump from an embedded FreeBSD ARM system using a
GDB process on a faster x86 host. Another use case is debugging the ker-
nel of a remote machine over a serial connection.

When cross-debugging a self-contained binary such as a static binary or
monolithic kernel, GDB is able to find all of the information it needs from
the binary. However, when debugging a binary that depends on other
binaries such as shared libraries or kernel modules, GDB needs to be able
to find these other binaries. Normally GDB looks for these binaries on the
host where it is being run, which works fine when debugging a native
process or core dump. However, when cross-debugging, GDB needs to be
able to access these additional binaries. This can be solved by using a sys-
tem root.

A system root is a copy of the shared binaries from a system stored at
an alternate directory. Often a system root may contain a full system
installation image. If the system root contains headers and libraries used
by compilers, a cross-compiler can use the system root to compile binaries
for the alternate system. Both GCC and clang use the --sysroot flag
to instruct the compiler to look for headers and libraries inside of a system
root. In GDB, a system root is indicated by setting the sysroot variable
to the path of the system root. GDB will then look for shared libraries and
kernel modules under that system root rather than in the host’s root file
system.

As an example, suppose a process run on a Raspberry Pi crashed gener-
ating a core dump. One can take the SD card from the Raspberry Pi and
insert it into an x86 machine. The SD card can then be mounted, and the
core dump can be examined on the x86 machine. GDB just needs to be
told to use the mount point of the SD card as the system root. Example
11 uses this to look at an ARM core dump running on an x86 host. In this
case, the SD card from the Raspberry Pi was mounted at /mnt.

March/April 2019 13

E x a m p l e 9 c o n t i n u e d f r o m p a g e 1 2

Example 11: Examining an ARM Core Dump on an x86 Host
> gdb -q sigframe
Reading symbols from sigframe...Reading symbols from
/mnt/home/john/work/johnsvn/test/sigframe/sigframe.debug...done.
done.
(gdb) set sysroot /mnt
(gdb) core-file sigframe.core
[New LWP 100086]
Core was generated by `./sigframe'.
Program terminated with signal SIGABRT, Aborted.
#0 thr_kill () at thr_kill.S:3
3 RSYSCALL(thr_kill)
(gdb) info sharedlibrary
From To Syms Read Shared Object Library
0x20092000 0x201e516c Yes /mnt/lib/libc.so.7
0x20016000 0x20030ef4 Yes /mnt/libexec/ldelf.so.1

If you forget to set the sysroot variable before loading the core file, you
can still set it after the core file is loaded. GDB will look for shared
libraries under the new system root automatically after it is changed.

The sysroot variable also works when debugging a remote FreeBSD ker-
nel. GDB will look for kernel modules and their associated debug infor-
mation under the system root. This can be useful even when the target
machine is the same architecture as the host but is running an operating
system or operating system version different from the host. �

J o h n B a l d w i n is a systems software developer.
He has directly committed changes to the FreeBSD
operating system for nineteen years across various
parts of the kernel (including x86 platform support,
SMP, various device drivers, and the virtual memory
subsystem) and userspace programs. In addition to
writing code, John has served on the FreeBSD core
and release engineering teams. He has also con-
tributed to the GDB debugger and LLVM. John lives
in Concord, California with his wife, Kimberly, and
three children: Janelle, Evan, and Bella.

14 FreeBSD Journal

