
16 FreeBSD Journal

Automated
Testing Framework

THE

D
espite its importance, testing can be boring and repetitive
work. Most of us are attracted to development work because
we like building things more than we like breaking them.
Fortunately, we have machines that are good at doing boring,

repetitive work without ever asking for a raise or time off.
Automating tests has many advantages. It means repeatable

tests. It means we know exactly what we are and are not testing,
and when something goes wrong, we can usually easily reproduce
the problem. Very few things make developers as happy as a bug
report with a reproducible test case.

It also means it is easier to run the tests regularly, which means
we more quickly discover things have broken. Users, it turns out,
don't like it when their software suddenly explodes. Instead, they
want it to be boring and predictable. Developers get to keep the
exciting surprises to themselves.

How Do FreeBSD Tests Work?
Like all great artists, the FreeBSD developers stole/borrowed code
from elsewhere. In this case, the source of inspiration was NetBSD.
ATF, or the Automated Testing Framework, started out as a Google
Summer of Code project. It was initially imported into NetBSD in
2007 and imported into FreeBSD in 2012.

ATF is the framework used to write tests. Another NetBSD proj-
ect, Kyua, runs the tests and gathers up results. When running
tests, you'll interact mostly with Kyua. When writing tests, you'll
usually interact with ATF. It's possible to write tests without ATF
and still have Kyua execute them, but we won't discuss that here.

by Kristof Provost
There are several reasons to write tests, and if you only take
away one idea from this article, it is that you should be writing
tests because it's good for the soul. Okay, that might be a lie,
but it's certainly good for the project.

March/April 2019 17

Why Would I Want to Write a Test?
Good question, glad you asked!

There are several reasons to write tests, and if you only take one idea
away from this article, it should be that you should be writing tests
because it's good for the soul. Okay, that might be a lie, but it's certainly
good for the project.

Tests ensure that functionality you rely on doesn't break. FreeBSD runs
its test suite very frequently. The results of the test run for amd64 can be
found on https://ci.freebsd.org/job/FreeBSD-head-amd64-test/.

Writing a test case is also a great way to help a developer fix your pet
bug. A short test case that demonstrates the problem is often the key to
getting bugs fixed. It not only conclusively demonstrates that there is a
problem, but it also clearly explains how to reproduce it, which makes
fixing it much easier.

When working on pf issues, I often find I spend much more time trying
to understand the setup and trying to reproduce the issue than I do on
the debugging and fixing. When bugs don't get fixed, it's often because
they can't be reproduced.

If you've got a pet patch you're trying to get committed, adding a test
can also be helpful. It demonstrates the problem you're fixing or the new
functionality you're adding. This serves both to convince people that this
change is a good idea and as an aid in reviewing the patch. After all, a
developer who commits a patch for you will have to fix any problems it
might cause as well. Demonstrating that your code is tested will make it
that much more likely that your patch will be included.

How to Use Tests
The tests, if installed, can be found in /usr/tests on your system. If
you've also got a source tree, you can find the source code for the tests
in /usr/src/tests, or in a subdirectory of the application, library or
other they test. For example, tests for /bin/sh can be found in
/usr/src/bin/sh/tests; pfctl tests can be found in
/usr/src/sbin/pfctl/tests. Tests for pf itself can be found in
/usr/src/tests/sys/netpfil/pf.

To run the tests, you'll want to install Kyua (‘sudo
pkg install kyua’). You can then issue ‘kyua test‘ in
/usr/tests. Many of the tests will want to be run as root:

/usr/tests % sudo kyua test
sbin/growfs/legacy_test:main -> passed [4.710s]
sbin/devd/client_test:seqpacket -> passed [0.015s]
sbin/devd/client_test:stream -> passed [0.015s]
sbin/dhclient/option-domain-search_test:main -> passed [0.005s]
sbin/pfctl/macro:space -> passed [0.051s]
...

18 FreeBSD Journal

You can also run subsets of tests by running the command in the test
subdirectory:

usr/tests/bin/cat % kyua test
cat_test:align -> passed [0.023s]
cat_test:b_output -> passed [0.025s]
cat_test:e_output -> passed [0.023s]
cat_test:nonexistent -> passed [0.022s]
cat_test:s_output -> passed [0.026s]
cat_test:se_output -> passed [0.023s]
cat_test:vt_output -> passed [0.029s]

Alternatively, you can enumerate the list of tests using ‘kyua list‘
and pick individual tests to run:

/usr/tests % kyua test lib/csu/static/fini_test:dso_handle_test
lib/csu/static/fini_test:dso_handle_test -> passed [0.002s]

To get more information about tests, use ‘kyua list -v‘. The extra
information can include things like required programs, required user, or a
description.

It goes without saying that this is something you'll only want to do on
an otherwise unused system. By their very nature, tests risk exposing bugs,
and some bugs are bad enough to bring the entire system down.
Moreover, because the tests try to exercise all sorts of features of the sys-
tem, it's quite possible they'll make configuration changes which can inter-
fere with the intended use of the system.

Don't run them without permission from the admin of the system. If that
happens to be you, the requirement to submit a written application in trip-
licate can probably be waived.

So, when would you run those tests? Usually during development, but
they can also serve as smoke test for a newly installed system. Passing the
tests does not guarantee that the hardware works perfectly, but it does
increase confidence.

How to Write a Test
When it comes to writing your own tests, there are really two different
topics to discuss: the mechanics of how to write the test and then the
judgement of what to test, and how to test it.

We'll cover the mechanics first, briefly, as this is mostly documented in
the atf(7) man page. Tests can be written as shell scripts or as C (or
C++) code—which one is best depends on what is being tested. Usually
the shell version (‘man 3 atf-sh‘) is best suited to test entire applica-
tions and the C/C++ version (‘man 3 atf-c, man 3 atf-c++‘) is best

March/April 2019 19

suited when testing libraries or (kernel) APIs.
atf-sh tests are executed by atf-sh, so they need a

#!/usr/bin/env atf-sh first line. This is done by the installation
code though, so we don't need to worry about it here. They always
contain a atf_init_test_cases function. This lists the test cases.
Each test case will always have a head and body and may also have a
cleanup function:

atf_test_case tc1
tc1_head() {

... first test case's header ...
}
tc1_body() {

... first test case's body ...
}

atf_test_case tc2 cleanup
tc2_head() {

... second test case's header ...
}
tc2_body() {

... second test case's body ...
}
tc2_cleanup() {

... second test case's cleanup ...
}

... additional test cases ...

atf_init_test_cases() {
atf_add_test_case tc1
atf_add_test_case tc2
... add additional test cases ...

}

Note how all test case functions have the same prefix. This prefix is
passed to the test system in the atf_init_test_cases() function,
allowing the framework to find them. The cleanup function can have
any name, but usually naming it cleanup is a good idea.

The head function is used to configure the test case. We can set the
test description using ‘atf_set "descr" "test description
goes here"‘. If this test can only be run as a specific user (i.e., root)
or on specific architectures, we'd add ‘atf_set require.user
root‘ or ‘atf_set require.arch amd64‘. A full list of options
that can be set here can be found in ‘man 4 atf-test-case‘.

If you need a more specific test, this can always be implemented

using ‘atf_skip‘. For example, tests that require the VIMAGE kernel
option to be set can do this:

if ["$(sysctl -i -n kern.features.vimage)" != 1]; then
atf_skip "This test requires VIMAGE"

fi

One snag here is that constructs like that can't be used in the head.
They'll need to go in the test body. Now that all of this setup and prepara-
tion is out of the way, we can finally look at the test body. This is where
we run the application or code we want to put through its paces.

Most of the heavy lifting will be done by atf-check(1). It executes a
command and can help us by checking that the exit status, standard out-
put, and/or standard error match our expectations. For example, we might
want to test that the false command really returns the expected exit
status (-s exit:1) and produces no output on either stdout (-o
empty) or stderr (-s empty):

atf-check -s exit:1 -o empty -e empty /usr/bin/false

We could also expect a signal from the test program with
atf_expect_signal, or expect a timeout with atf_expect_time-
out.

Finally, if we've written a test for something we know to be broken, we
can also add this information to the test. Using atf_expect_fail we
can indicate that we expect this test to fail. Traditionally we'd also include
the bug (PR) number in this message. The test will still be executed, but
the failure won't be counted as a failed test.

C Tests
Tests in C (or C++) have a similar structure, albeit with somewhat differ-
ent syntax.

Here's a short example:

#include <atf-c.h>

ATF_TC(tc1);
ATF_TC_HEAD(tc1, tc)
{

atf_tc_set_md_var(tc, "require.user", "root");
}
ATF_TC_BODY(tc1, tc)
{

ATF_CHECK_EQ(3, 2 + 1);
}

— c o n t i n u e s n e x t p a g e —
20 FreeBSD Journal

ATF_TP_ADD_TCS(tp)
{

ATF_TP_ADD_TC(tcs, tc1);

return atf_no_error();
}

The structure should be familiar after what we've covered already.
We've got an entry point (ATF_TP_ADD_TCS()) that lists all of our
test cases, and our test case has a head (ATF_TC_HEAD()) that tells
the test framework we need to be root to run this test.

We may have lied about that last bit, because all our test body does
is make sure that 2 + 1 equals 3. We'd generally expect that statement
to be true, so this test should pass.

Hooking It All Up
Now that we know how to write tests, we still need to work out how
we can actually run them. Fortunately, the makefiles do all of the hard
work for us and we only have to write something like this:

$FreeBSD$

ATF_TESTS_SH += sh_example
ATF_TESTS_C += c_example

.include <bsd.test.mk>

This would expect to find a 'sh_example.sh' file and 'c_example.c'
file, build them, and install them as part of the 'buildworld' and 'install-
world' make targets. The makefiles will also automatically create the
required directory structure, and Kyuafile.

How to Debug Your Tests
A sad fact of life is that code is never perfect from the start (why else
would we need tests?), and test code is no different. It's quite possible
that your test won't do exactly what you expected it to do and the kyua
output is typically not very helpful:

kyua test example
example:example -> failed: atf-check failed

; see the output of the test for details [0.017s]

Fortunately, kyua keeps track of a lot more than just that, and if we
ask nicely, we can get more information about the failed test, its envi-
ronment, and the output it generated during the tests:

— c o n t i n u e d —

kyua test example
example:example -> failed: atf-check failed; see the output
of the test for details [0.017s]

March/April 2019 21

kyua report --verbose example:example
===> Execution context
Current directory: /usr/tests/sys/netpfil/pf
Environment variables:

HOME=/root
LANG=C
LC_CTYPE=en_US.UTF-8
LC_PAPER=en_GB.UTF-8
LOGNAME=root
MAIL=/var/mail/root
PATH=/home/kp/bin:/usr/local/sbin:/sbin:/usr/local/bin:/
bin:/usr/bin:/usr/sbin:/home/kp/bin:/bin:/sbin:/usr/bin:/
usr/sbin:/usr/games:/usr/local/bin:/usr/local/sbin:/usr/
pkg/bin:/usr/pkg/sbin
SHELL=/bin/csh
SUDO_COMMAND=/usr/local/bin/kyua test example
SUDO_GID=1001
SUDO_UID=1001
SUDO_USER=kp
TERM=xterm-256color
USER=root

===> example:example
Result: failed: atf-check failed;
see the output of the test for details
Start time: 2018-12-28T17:57:49.314738Z
End time: 2018-12-28T17:57:49.332141Z
Duration: 0.017s

Metadata:
allowed_architectures is empty
allowed_platforms is empty
description is empty
has_cleanup = false
is_exclusive = false
required_configs is empty
required_disk_space = 0
required_files is empty
required_memory = 0
required_programs is empty
required_user is empty
timeout = 300

Standard output:
Executing command [false]

— c o n t i n u e s n e x t p a g e —
22 FreeBSD Journal

Standard error:
Fail: incorrect exit status: 1, expected: 0
stdout:

stderr:

===> Failed tests
example:example -> failed: atf-check failed; see the output of the test for details [0.017s]
===> Summary
Results read from /root/.kyua/store/results.usr_tests_sys_netpfil_pf.20181228-175749-261396.db
Test cases: 1 total, 0 skipped, 0 expected failures, 0 broken, 1 failed
Start time: 2018-12-28T17:57:49.314738Z
End time: 2018-12-28T17:57:49.332141Z
Total time: 0.017s

The most interesting things here are the standard output and stan-
dard error logs. They tell us we were executing the command
'false', we expected error status '0', but got '1' instead. In this
case that's because our test is wrong. Naturally we'd expect `false`
to exit with a status of 1 and not 0.

For more complex atf-sh tests, it can be quite useful to include
'set -x' at the top of the test body. This will tell the shell to log
everything it executes, giving a good overview of what commands were
run and where the test stopped.

What Is a Good Test?
Knowing how to write the test is only half the battle. Knowing what to
test is equally important. There are no hard rules about what makes for
a good test, but there are a few tricks that can help to find good sce-
narios to test.

The easiest way is to start from a known bug. If you know some-
thing's broken, there's value in writing a test for it, if only to ensure
that this particular bug will never happen again. Quite often, bugs will
cluster around specific features or particular sections of code, so varia-
tions on that scenario may catch more bugs.

Another valuable test case is to check validation code. A lot of code
checks user input to ensure that it falls within expected ranges. Pick a
bunch of values and ensure that they're rejected or accepted as appro-
priate. Typically, very low or high values, as well as values just inside and
just outside the valid range are good test points.

For example, say a given configuration knob is supposed to accept
values between 0 and 10 inclusive. A good test would be to ensure
that -1000, -1, 11, and 1000 are rejected and that 0, 5 and 10 are
accepted.

— c o n t i n u e d —

March/April 2019 23

When thinking about tests, one naturally tends to think about 'bad'
scenarios: bad input, bad configuration, bad everything. It's also useful to
test a setup where everything works as expected.

Finally, it's important to remember that having some tests is vastly better
than having none at all. Don't let uncertainty about what to test stop you.
Write a test, any test, and you'll have contributed to the overall stability
and quality of the system. Even a very basic test can reveal problems.

vnet
Finally, a few words about my favorite tests: network stack and firewall
tests.

12.0 is the first release where vnet is enabled by default. I won't go into
detail about vnet, that's a topic for a different article written by someone
else.

vnet virtualizes the network stack. If that gobbledygook doesn't mean
anything to you, try this: vnet gives each jail its own network stack.
Network interfaces can belong exclusively to that jail. It can set its own
IP addresses without help from the host. It's even possible to use ipfw or
pf from inside the jail. A jail starts to look a lot like a virtual machine that
way.

Long story short, it means that you can create network setups that'd
usually require multiple machines all from the comfort of your laptop. In
seconds. It means it's possible, and actually pretty easy, to write tests for
the entire network stack. Speaking from my perfectly neutral and not-at-
all-biased perspective as the pf maintainer, it means you should be writing
tests for pf.

Find examples in /usr/src/tests/sys/netpfil/pf.
Other people have taken advantage of this example to write tests for

IPSec, see /usr/src/tests/sys/netipsec. •

K r i s t o f P r o v o s t is a freelance embedded software engineer specializing in network and
video applications. He is a FreeBSD committer, maintainer of the pf firewall in FreeBSD, and a
board member of the EuroBSDCon Foundation. Kristof has an unfortunate tendency to stumble
into uClibc bugs and a burning hatred for FTP. Do not talk to him about IPv6 fragmentation.

24 FreeBSD Journal

