
16 FreeBSD Journal

In my day job, I am responsible for a 40-node,
big data cluster used in education and research

at the Darmstadt University of Applied Sciences, Darmstadt,
Germany. One of the tasks of a sysadmin is checking whether
the systems you are responsible for are healthy and available
on the network.

Icinga2
Raspberry Pi 3

T
his is typically done using periodic checks from a monitoring
instance that collects data from remote machines and uses the
metrics to trigger alarms when certain thresholds are reached.
We monitor the cluster nodes from the central file server, which

can spare a few cycles when it is not serving files to clients (ZFS-based
NFSv4 exports for home directories and other shared data).

Another sysadmin job is thinking about the “what-could-go-
wrong” scenario. That scenario might never happen, but when and if
it does, you are glad to have already implemented a “better-safe-
than-sorry” scenario. The situation here is “who is watching the
watcher?”—what will happen if the central monitoring instance goes
down? It could very well be that the outage is not recognized for a
while, which would also not inform us of any other failures occurring
in the meantime. When that happens, we not only have to deal with
one but two problems: the unavailable monitoring system and the
problem that the monitoring should have told us about. We quickly
came to the conclusion that a second system needs to monitor the
main monitoring server and alert us if that system disappears from
the network without running other checks itself (which is optional).
Ideally, this should be done from a separate network. If both systems

by Benedict Reuschl ing

on theRunning

May/June 2019 17

were on the same subnet, we would not get any information from our two
monitoring systems if that whole network became unreachable. Of course, a
second system just for the sake of monitoring is expensive (both the initial
investment and running costs like electricity), so we needed to find a low-cost
solution.

The Raspberry Pi is the perfect tool for long-term, 24/7 monitoring. With the
small form factor, low power use, and a powerful enough CPU for periodic
checks of remote systems, it can solve a variety of tasks. With a small initial
cost (the board itself, a compact flash card, and some cables) it is easy to get
started, although some tasks like processing package updates may take a bit
longer than on an amd64 system. Compiling things locally on the RPi3 takes
much longer, hence we rely on packages for our third-party software needs.

First, we download the FreeBSD-12.0-RELEASE-arm64-aarch64-RPi3.img.xz
from the SD Card Images section in the download area of freebsd.org. After
un-xz-ing the archive, it is time to insert the SD card (we use one with 64 GB;
smaller ones also work perfectly fine) into the reader on the machine that was
downloading the image. The following command line will copy the image to
the SD card (change device names to match; take care not to overwrite a dif-
ferent partition):

Once dd(1) has finished writing the image, unmount it and insert it into the
RPi3’s SD card slot. Connect all the other peripherals like monitor, keyboard,
network cable, and power. The Pi should start booting once the power is con-
nected. The first boot will take a bit of time to expand the image according to
the size of the SD card. Be patient—this will only be done once and subse-
quent boots will run faster. There are two users that you can log in with by
default: root and freebsd, with the same password as the username, respec-
tively. This is the first thing you should change after logging into the Pi for the
first time. Then it is time to do some initial system configuration based on your
needs and environment.

You may have heard that writing to the SD card constantly will reduce the
lifetime as there are only so many rewrite cycles that the cells that make up
the storage media can take. To avoid an early death, we attached a cheap 32-
GB SSD to it and create a ZFS pool on it. Running ZFS on an embedded device
is generally discouraged and UFS is a perfectly fine filesystem for those kinds
of devices. Surprisingly enough, we’ve been running this setup for months
now without any problems. Granted, the zpool is not redundant and the
writes on the pool are not as heavy as on our big data file server. Your mileage
may vary, and additional tuning may be required. Here is the ZFS list output to
show which datasets were created:

dd if=/FreeBSD-12.0-RELEASE-arm64-aarch64-RPI3.img of=/dev/disk2\

bs=1m conv=sync

We are still booting from UFS, but the main, write-heavy filesystems like
/usr and /var reside on the SSD pool. This is as simple as creating the
datasets (activating lz4 compression in the process) and copying the directory
contents from UFS before setting a mountpoint. Take extra precautions when
mounting /usr as this will mount the ZFS dataset /usr over your current sys-
tem, which will likely cause some interruptions. To prevent that and let the Pi
boot properly, I have the following lines in my /etc/rc.local:

/sbin/zpool import -f ssd
/sbin/zfs mount -a
swapon /dev/zvol/ssd/swap
/usr/sbin/ntpdate -b de.pool.ntp.org

As you can see, I’m also running the swap from the SSD and sync my time
upon reboot from a timeserver near me. For the sake of completeness, these
are my entries in /boot/loader.conf:

Configure USB OTG; see usb_template(4).
hw.usb.template=3
#umodem_load="YES"
Multiple console (serial+efi gop) enabled.
boot_multicons="YES"
boot_serial="YES"
Disable the beastie menu and color
beastie_disable="YES"
loader_color="NO"
geom_label_load="YES"
verbose_loading="YES"
autoboot_delay="2"
zfs_load="YES"

The /etc/rc.conf is fairly minimalistic and only has a few changes in it:

hostname="rpi3.mydomain.local"
ifconfig_DEFAULT="DHCP"
sshd_enable="YES"
sendmail_enable="NONE"

18 FreeBSD Journal

Code continues

ssd 22.4G 6.42G 22.5M /ssd
ssd/swap 1.03G 6.45G 1.00G -
ssd/tmp 41.6M 6.42G 41.6M /tmp
ssd/usr 1.44G 6.42G 1.44G /usr
ssd/usr/ports 1.08G 6.42G 1.08G /usr/ports
ssd/var 10.8G 6.42G 10.5G /var
ssd/var/cache 860K 6.42G 860K /var/cache
ssd/var/db 252M 6.42G 252M /var/db
ssd/var/log 34.8M 6.42G 34.8M /var/log

May/June 2019 19

sendmail_submit_enable="NO"
sendmail_outbound_enable="NO"
sendmail_msp_queue_enable="NO"
growfs_enable="YES"
keymap="de.kbd"
hostid_enable="YES"
fsck_y_enable="NO"
background_fsck="no"
mixer_enable="no"

Reboot to see that the Pi will come back up to the login prompt without
any errors and that ssh logins are possible. This is an important step to run-
ning the Pi headless without a monitor attached to it.

Since we want the RPi3 to send us notifications if our monitoring system
detects anything unusual, we configure SSMTP. This provides us with a simple,
send-only mail delivery system. For this article, we use Google mail to deliver
email. Be aware of the sensitive nature of the emails you are sending, so
Gmail might not be the best solution for all environments. Replace it with
your own mail delivery that you know and trust to ship messages about any
system problems you might encounter.

First, we need to install the ssmtp package:

pkg install ssmtp

The configuration file is located in /usr/local/etc/ssmtp/ and we need
to modify two files here (create them if they do not exist yet or copy the .sam-
ple files of the same name and modify them): ssmtp.conf and revaliases.
In ssmtp.conf, we need only to have the following lines present:

root=yourusername@gmail.com
mailhub=smtp.gmail.com:587
AuthUser=yourusername@gmail.com
AuthPass=thepasswordforthegmailaccount
UseSTARTTLS=YES
rewriteDomain=gmail.com
hostname=rpi3.mydomain.local
FromLineOverride=YES
UseTLS=YES

The revaliases file has just two lines in it:

root:yourusername@gmail.com:smtp.gmail.com:587
otheruser:yourotherusername@gmail.com:smtp.gmail.com:587

This will configure the local mapping to determine which local user should
get mail delivered. At least root and an unprivileged account should be con-
figured here. Periodic system mail is sent to root by default and the email

Continued

address after defines where that should be delivered. The same is true for per-
sonal mail to that unprivileged user in the line below it. The mailer.conf in
/etc should have the following lines in it (likely done by the port/package):

#sendmail /usr/libexec/sendmail/sendmail
#send-mail /usr/libexec/sendmail/sendmail
#mailq /usr/libexec/sendmail/sendmail
#newaliases /usr/libexec/sendmail/sendmail
#hoststat /usr/libexec/sendmail/sendmail
#purgestat /usr/libexec/sendmail/sendmail
sendmail /usr/local/sbin/ssmtp
send-mail /usr/local/sbin/ssmtp
mailq /usr/local/sbin/ssmtp
newaliases /usr/local/sbin/ssmtp
hoststat /usr/bin/true
purgestat /usr/bin/true

Make sure that ssmtp owns the directory var/spool/clientmqueue using chown:

chown -R smmsp:smmsp /var/spool/clientmqueue
chmod -R 0775 /var/spool/clientmqueue

Test the mail setup by sending yourself a test message as the root user and the
unprivileged user. You may need to allow unsecure applications in your Google
account settings to enable mail transport. When mail is arriving, the configura-
tion for Icinga2, the monitoring system we are using, can commence.

Packages for Icinga2 need to be installed first, including PostgreSQL and the
necessary PHP libraries for nginx, which we’ll use as the webserver to run the
Icingaweb2 front-end.

pkg install icinga2 icingaweb2 postgresql95-server nginx
ImageMagick6-nox11 php72-pecl-imagick

We enable the icinga service and postgresql to run upon reboot. Do not start
these services just yet as they are still unconfigured:

sysrc icinga2_enable=yes
sysrc postgresql_enable=yes

Configuring PostgreSQL as a backend database is the next task. Since we are
running on the SSD, the database can benefit from some tuning for ZFS. Note
that this is not strictly needed and postgres will run just fine on UFS.

A dataset called pgdata is created, some properties are set, and ownership of
the mountpoint is changed to the pgsql user:

zfs create -o mountpoint=/usr/local/pgsql/data ssd/pgdata
zfs set recordsize=8k ssd/pgdata
zfs set logbias=throughput ssd/pgdata

20 FreeBSD Journal
Code continues

zfs set redundant_metadata=most ssd/pgdata
zfs set primarycache=metadata ssd/pgdata
chown pgsql:pgsql /usr/local/pgsql/data

The next steps are done as the pgsql user, either by switching to it using
su(1) or (when configured) via sudo -u pgsql.

pgsql$ cd
pgsql$ initdb --no-locale --encoding=utf-8 --lc-collate=C -E UTF8 -D ./data
psql$ pg_ctl start -D ./data

This will initialize the database cluster and start the database using pg_ctl. UTF-
8 is set as the encoding for the database as Icinga requires it. Once the postgresql
service is running, a user and database called icinga is created:

pgsql$ createuser -dPrs icinga
pgsql$ createdb -O icinga -E UTF8 icinga

To allow this user to access the database, the following lines need to be added
to /usr/local/pgsql/data/pg_hba.conf:

local icinga icinga md5
host icinga icinga 127.0.0.1/32 md5
host icinga icinga ::1/128 md5

Icinga is using its own database schema to store tables for hosts, services, users,
notifications, etc. These need to exist before Icinga can start monitoring. An SQL
script is provided to set up the database using psql:

pgsql$ psql -U icinga -d icinga < /usr/local/share/icinga2-ido-pgsql/
schema/pgsql.sql

Subsequent updates of the Icinga package/port will require updates to the data-
base schema as well. These updates are located under /usr/local/share/
icinga2-ido-pgsql/schema/upgrades and must be applied in order. Check
the update instructions on the Icinga website for details. After the schema has
been set up in the database, log out of the pgsql user.

Like nginx, Icinga has a plugin-like system to activate certain features. Our setup
requires the activation of at least the ido-pgsql (since we are using that as the
backing database) and command (to, i.e., schedule service checks through
Icingaweb2) modules. The api feature will replace the command module in the
future, but for now, we activate it to be on the safe side.

icinga2 feature enable ido-pgsql api command

To tell Icinga about the postgresql database details, the ido-pgsql.conf file
located in /usr/local/etc/icinga2/features-enabled/must contain the

May/June 2019 21

Continued

following lines:

object IdoPgsqlConnection "ido-pgsql" {
user = "icinga"
password = "thepasswordyousetwhencreatingthedatabaseabove"
host = "localhost"
database = "icinga"

}

Run the command icinga api setup and modify /usr/local/etc/
icinga2/conf.d/api-users.conf to set up a separate API user for
icingaweb2:

object ApiUser "icingaweb2" {
password = "somerandompasswordstrongerthanthisone"
permissions = ["status/query", "actions/*", "objects/modify/*",

"objects/query/*"]
}

The permissions allow certain actions to be performed by that user. Other API
users are possible for different actions that may have fewer privileges. This is
beyond the scope of this article, but details can be found in the Icinga2 documen-
tation (https://icinga.com/docs/).

Time to restart our database and bring up icinga2:

service postgresql restart
service icinga2 start

Configure nginx as the webserver for icingaweb2. The following steps are
required for that:

sysrc php_fpm_enable=yes
sysrc nginx_enable=yes
sed -i '' "s/listen\ =\ 127.0.0.1:9000/listen\ =\ \/var\/run\/php5-
fpm.sock/" /usr/local/etc/php-fpm.d/www.conf
sed -i '' "s/;listen.owner/listen.owner/" /usr/local/etc/php-
fpm.d/www.conf
sed -i '' "s/;listen.group/listen.group/" /usr/local/etc/php-
fpm.d/www.conf
sed -i '' "s/;listen.mode/listen.mode/" /usr/local/etc/php-fpm.d/www.conf

Add the following section to nginx configuration file located in
/usr/local/etc/nginx/nginx.conf before the location / { ... } part:

location ~ ^/icingaweb2/index\.php(.*)$ {
fastcgi_pass unix:/var/run/php5-fpm.sock;
fastcgi_index index.php;
include fastcgi_params;
fastcgi_param SCRIPT_FILENAME /usr/local/www/icingaweb2/public/index.php;

Code continues

22 FreeBSD Journal

fastcgi_param ICINGAWEB_CONFIGDIR /usr/local/etc/icingaweb2;
fastcgi_param REMOTE_USER $remote_user;

}

location ~ ^/icingaweb2(.+)? {
alias /usr/local/www/icingaweb2/public;
index index.php;
try_files $1 $uri $uri/ /icingaweb2/index.phpis_argsargs;

}

Note that setting up SSL is beyond the scope of this article but is fairly straight-
forward with services such a letsencrypt.

Create a php.ini from the provided php.ini-production file that came with the
package:

cp /usr/local/etc/php.ini-production /usr/local/etc/php.ini

Edit the file and set the date.timezone line to the time zone of the server.
The webserver and php-fpm can start now:

service nginx start
service php-fpm start

Take a browser and point it to the IP/DNS name of your RPi3 and add /icin-
gaweb2/setup at the end. The icingaweb setup is protected from drive-by
attackers by a token that needs to be created from the command line like this:

icingacli setup token create –config=/usr/local/etc/icingaweb2
chown -R www:www /usr/local/etc/icingaweb2

Follow the setup steps and provide the postgresql database information (user-
name, password) when prompted. Lars Engels, who maintains the icinga2 port
has a blog post that will walk you through the setup (http://lme.postach.io/post/
installing-icinga-web-2-with-apache-2-4-icinga-2-and-mysql-on-freebsd).

Configure hosts and services to monitor:
Icinga checks are divided into active and passive checks. The active checks are

executed on the monitored hosts themselves, and the results are sent back to the
icinga server for further processing. Passive checks are done by the icinga server
from outside of the hosts like ping. We’ll only cover passive checks; however,
active checks are also working well enough on the Raspberry Pi. The configura-
tion file for the hosts to monitor is located under /usr/local/etc/icinga2/
conf.d/hosts.conf and my default already contains the icinga server itself.
Simply add a new host using the following template:

object Host "myhost" {
import "generic-host"
address = "ip.address.of.myhost"

May/June 2019 23
Code continues

Continued

vars.notification["mail"] = {
groups = ["icingaadmins"]

}
}

Before restarting icinga, make sure to let it check the configuration file before
restarting the service:

icinga2 daemon -C && service icinga2 restart

The host should now appear in the icingaweb2 GUI. The Raspberry Pi will con-
tinue to contact the host periodically and send alerts if a host or service is chang-
ing its state from UP to DOWN or vice versa.

Icinga offers a lot of functionality. Depending on the number of hosts and serv-
ices to check, the RPi3 might need some time to process those. For a small num-
ber of hosts/services, this should not become problematic and is a cost-effective
solution with a lot of customization options. •

FreeBSD is internationally recognized as an innovative
leader in providing a high-performance, secure, and stable
operating system.
Not only is FreeBSD easy to install, but it runs a huge number

full source code.

The FreeBSD Community is proudly supported by

Help Create the Future.
Join the FreeBSD Project!

The FreeBSD Project is looking for

Find out more by

Checking out our website

Downloading the Software

for people like you to help continue
developing this robust operating system.
Join us!

Already involved?

Don�t forget to check out the latest
grant opportunities at
freebsdfoundation.org

B e n e d i c t R e u s c h l i n g joined the FreeBSD Project in 2009. After receiving his full documenta-
tion commit bit in 2010, he actively began mentoring other people to become FreeBSD commit-
ters. He joined the FreeBSD Foundation in 2015, where he is currently serving as vice president.
Benedict has a Master of Science degree in Computer Science and is teaching a UNIX for soft-
ware developers class at the Darmstadt University of Applied Sciences, Darmstadt, Germany.
Together with Allan Jude, he is host of the weekly BSDNow.tv (http://BSDNow.tv) podcast.

Continued

24 FreeBSD Journal

®

