
4 FreeBSD Journal

Capsicum
Update 2019

The Capsicum framework provides tight isolation between processes.
When a process enters the capability mode (sandbox), it doesn't have
access to any global namespace. The process can enter this state by
using cap_enter(1) syscall. The difference between Capsicum and

other popular sandbox frameworks is that Capsicum focuses on the capabili-
ties of processes instead of filtering syscalls. In Capsicum, descriptors repre-
sent capabilities. The descriptors are perfect for capabilities since we can
duplicate (dup(2)), send them to other processes (through Unix Domain
Socket), or revoke them (close(2)).

Another component of the framework is capability rights. These allow us
to limit capabilities (file descriptors) even further. The descriptor can be limit-
ed to be readable (CAP_READ) or writable (CAP_WRITE) using a
cap_rights_limit(2) syscall. The capabilities can be limited even if they can
reposition their offset in the file (CAP_SEEK). Capsicum allows the purpose
of the descriptor to be defined very precisely. There are over 50 capabilities
right now.

For a more detailed description of the framework, we recommend you
look at other issues of the FreeBSD Journal where you will find more
detailed descriptions of Capsicum [1] [2].

Casper
Other primitives necessary to understand the Capsicum environment are
Casper and Casper services. Casper provides functionality not available in

by Mariusz Zaborski

FreeBSD is a general-purpose operating system. One
of its goals is to provide a secure environment for its
users. To meet that goal, among others, FreeBSD has
introduced a Capsicum framework. Every day, the
FreeBSD community works to make improvements,
and in this article, we will take a look at how
Capsicum has changed over the past year.

capability mode through convenient APIs, making Capsicum more practical.
Casper accomplishes this by utilizing the privileged separation of the process.
After creating a new Casper instance, the initial process forks. Next, the unprivi-
leged process enters capability mode. If the sandboxed application wants to
perform some forbidden operation in Capsicum, it has to delegate this work to
Casper. Casper communicates with a sandboxed application using a straightfor-
ward API called libnv (or nvlist).

Let’s assume that an application wants to resolve the DNS name. Before
entering capability mode, it can create Casper services—system.dns. Each time it
needs to resolve a DNS, instead of calling the getaddrinfo function, it calls the
cap_getaddrinfo. The Casper function has precisely the same API as standard
libc, except it has one more argument that takes Casper connection.

The Casper services API is straightforward. Thanks to this, the sandboxing
application is much more comfortable. Without Casper, all applications develop-
ers would need to reimplement the privileged separation routines to sandbox
new application.

Introducing fileargs
The fileargs service allows programs to access a filesystem. This service makes it
relatively easy to sandbox applications. The wc(1) and head(1) are examples of
applications which depend on it. The fileargs service doesn't provide a full
filesystems service. Its primary focus is to address the applications which, as an
argument, takes a vector of files to open. Nevertheless, this service may also be
used for different scenarios.

The service is essential for two reasons. First, as described above, it allows a
new applications to be sandboxed. Secondly, because this is the first service in
which the API doesn't reflect the libc functions.

Currently, the fileargs services provides two main functions—it allows the
opening of files and to get their status. The filargs_open/fileargs_fopen func-
tions allow the opening of a file from a given path and the fileargs_fstat func-
tion provides the capability to gather the status. The primary function is
fileargs_init. This function initializes the Casper service.

The argc and argv arguments are just vectors within the files that applications
should be able to open. The flags and mode argument aren’t any different from
an argument to open. Those arguments describe how the file should be opened
and in which mode it should be created. Next is the list of capabilities that the
newly opened file should keep. The last argument is which operations in service
are permitted. For now, services define two operations, open (FA_OPEN) and
lstat (FA_LSTAT).

The fileargs_cinit function is very similar to the filargs_init function. The only
difference is that fileargs_cinit reuses already existing Casper instances. In the
case of a filargs_init function, the Casper service creates new instances.

Sept/Oct 2019 5

6 FreeBSD Journal

Listing 1 presents a patch for sandboxing the head(1). The patch is straightfor-
ward. All we needed to do was initialize the Casper service with the right capa-
bilities, pass argv and argc to it, and change the open function to the Casper
version. Finally, we entered the capability mode.

It is worth noting that the fileargs service API is still considered to be experi-
mental and may change.

Improving cap_sysctl
The cap_sysctl services allow us to interact with the kernel state. In the original
implementation, we introduced the cap_sysctlbyname function. However, when
the sandboxing process of rtsol(8) and rtsold(8) began, it became clear it was not
enough. The sysctl can be referred to in two ways—by its text representation and
by its numeric representation.

The process of sandboxing those applications motivates developers to extend
cap_sysctl. The cap_sysctl and cap_sysctlnametomib functions were introduced.
The first allows the manipulation of values through numeric representation. The

Listing 1. The patch for sandboxing head(1).

Sept/Oct 2019 7

second makes it possible to fetch a numeric representation of Management
Information Base (MIB) of sysctl from a given string representation. The interface
of those two functions is very similar to their predecessor. The only change is that
the Casper functions expect additional argument with the connection to the
Casper service.

The interface extension also meant that the limitation functions should be
reworked. We introduced a new interface for the cap_sysctl service:

• cap_sysctl_limit_init - initializes the limitation structures
• cap_sysctl_limit_name - allows the limiting of single MIBs through name

representation
• cap_sysctl_limit_mib - allows the limiting of single MIBs through numeric

representation
• cap_sysctl_limit - sets the limits on given Casper service instances and frees

all underlying structures.

In Listing 2, we have an example of using it. First, we create a Casper instance
with cap_init, and Casper service with cap_service_open, which is the standard

Listing 2. The main page example of usage cap_sysctl limits.

method. Next, we initialize sysctl limits. We limit our service only to one
sysctl--kern.trap_enotcap. We can refer to it only with a text representation.
The CAP_SYSCTL_READ also means that an application can only fetch the
value of this sysctl. At the end of Listing 2, the program fetches that value.

Private Services
Mark Johnston did some more exciting work. When he was sandboxing
rtsol(8) and rtsold(8), he implemented a private Casper service dedicated only
to those two applications. The rtsold(8) is a daemon program to send ICMPv6
Router Solicitation messages on the specified interfaces. The service is appli-
cation specific, so there was no reason to make it publicly available. This
approach may get us to the point where some services will be installed from
the ports/packaging systems. His work allows us to see that the Casper serv-
ice may also be used in different environments for process separation.

The rtsol(8) and rtsold(8) used Casper to create a service for sending Router
Solicitation messages on a raw ICMPv6 socket. This is accomplished by the
cap_sendmsg service. Another private service, cap_script, is used to spawn
and collect the status of scripts required by the rtsold daemon. The third and
last service implemented for this program is cap_llflags. This service is respon-
sible for fetching the flags for the link-local IPv6 address on the specified
interface.

The rtsold(8) is an example of a sandboxed program within the Casper
service that didn't require the implementing of general wild services.

The Super Capsicumizer 9000
Concealed behind this funny name is a small diamond. The Super
Capsicumizer 9000, or just Capsicumizer, is an open-source project that has
tried, with success, to implement the sandbox launcher that uses Capsicum.
[3] AppArmor inspires the Capsicumizer. AppArmor is a mandatory access
control system that allows process access to be limited. Its confinement is
provided via profiles loaded into the kernel, typically on boot. The profiles can
be managed by the administrator of the system and describe which resources
the application should have access to.

Capsicumizer is based on the profiles as well. The difference is that instead
of loading profiles to the kernel, we run Capsicumizer in userland and allow
Capsicum to handle limitations of the process. The patterns are defined using
UCL syntax.

The Capsicumizer uses a libpreopen library to all the resource pre-opened
directory descriptors and using them in capability-safe libc wrappers. Thanks
to that library, our application will have all the capabilities it requires.

Currently, the limitation of Capsicumizer is that it allows only limited
resources to the filesystems one. Unfortunately, defining or preconfiguring
network access is not supported.

The Capsicumizer is an exciting project that already allows us to sandbox
applications without modifying them. For now, it is limited only to the filesys-
tem. It would be interesting to see it combined with the Casper. With such a

8 FreeBSD Journal

Sept/Oct 2019 9

combination, we would be able to sandbox a lot of applications without chang-
ing their code.

Summary
The FreeBSD Capsicum framework is still under development but is already wide-
ly used. The improvements to the Casper services, especially cap_fileargs, opens
a whole new set of applications that can be easily sandboxed. Projects like
Capsicumizer can get us to the point where administrators wanting to separate
single process will not need to touch the code to achieve their aim. •

M a r i u s z Z a b o r s k i is a QA & Dev manager at Fudo Security. He has been the
proud owner of the FreeBSD commit bit since 2015. Mariusz's main areas of inter-
est are OS security and low-level programming. At Fudo Security, Mariusz leads a
team that is developing the most advanced solutions to monitor, record, and con-
trol traffic in IT infrastructure. In 2018, Mariusz organized the Polish BSD User
Group. In his free time, he enjoys blogging—https://oshogbo.vexillium.org.

B I B L I O G R A P H Y
[1] Jonathan Anderson, Stanley Godfrey, Robert N. M. Watson, Toward Oblivious Sandboxing

with Capsicum
[2] Mariusz Zaborski, FreeBSD Journal issue May/June 2018, “Capsicum—Just apply me!”
[3] https://github.com/myfreeweb/capsicumizer

Listing 3. An example of configuation from Capsicumizer 3000 which allows to sandbox gedit.

