
10 FreeBSD Journal

lder architectures (e.g., MIPS, early i386) only supported read and write
permission, but modern CPUs generally support an execute permission

as well. Used correctly, the execute permission can mitigate a number of
common security vulnerabilities. For example, it used to be common to
exploit a program by writing code (commonly known as shell code) to an
improperly bounds checked string on the stack and changing the saved
return address of the function to point to the string. By removing the exe-
cute permission from the stack, we can prevent this attack. Most FreeBSD
architectures do this.

As expected, breaking simple, stack-based attacks leads attackers to look
for other vulnerabilities. One of the simplest next steps was to find a way to
write code to a page that was mapped executable followed by smashing the
stack to point the return address to it. A popular mitigation for this is the
write-XOR-execute policy (W^X). This policy prevents mapping pages with
both the write and execute permission. For most programs, this works with-
out program changes outside the runtime linker, but some programs such as
Java virtual machines and web browsers use just-in-time (JIT) compilers to
generate code and run it. These JITs are critical to achieving reasonable per-
formance, but, implemented naively, they don't work with W^X. Fortun-
ately, it is usually a simple matter to map pages writable, write generated

Permissions
The virtual address space of a process contains a number of
physical pages mapped into memory. These might be pages
from a program, a library, an ordinary file, or anonymous
pages that begin life as a zeroed page. These mappings are
maintained in a translation lookaside buffer (TLB). On modern
architectures, the TLB allows pages to be mapped with a combina-
tion of read, write, and execute permissions. This enables things
like read-only sharing of code and data between processes for
physical memory utilization.

i n F r e e B S D by Brooks Davis

I m p r o v i n g M e m o r y

O

Sept/Oct 2019 11

code to them, and then make them executable. Not all programs are trivially
converted though, so W^X implementations generally provide a way to dis-
able W^X for certain programs.

FreeBSD does not currently support W^X, but work is in progress. The main
difficulty has been implementing an appropriate framework for tagging bina-
ries that must opt out and providing mechanisms to test opting in or out. We
have now added a general mechanism (and ELF note) for setting opt-in and
opt-out bits in binaries as well as flags in procctl which allow features to
be enabled or disabled in a given execution of a program. We expect to have
W^X available in FreeBSD 13 and hope to have it enabled by default (at least
for new programs). The latter part will depend on our confidence in testing
existing software.

Setting Maximum Page Permissions
In the kernel, each page has both a set of permissions and a set of maximum
permissions. For example, a page backed by a file that the process can read,
but not write, will not include write permission in either set. Anonymous
pages have read, write, and execute in all cases in FreeBSD. File-backed pages
depend on the process's access to the file and any restrictions placed on the
file descriptor when it was opened.

While the kernel knows about these, the standard APIs for manipulating
page permissions—mmap() and mprotect()—don't. This leads to excessive
default maximum permissions. For example, pages allocated for malloc()
using mmap() default to read and write permission, but can be made exe-
cutable using mprotect(). In almost no circumstance is that desirable, yet
today there is no way to prevent it.

Diversion to CHERI
Before discussing solutions to this problem, we will consider another problem.
The CHERI architecture adds a new hardware type, the capability. These capa-
bilities (not to be confused with Capsicum capabilities) grant access to regions
of virtual memory. They specify a range of accessible addresses along with a
set of permissions—load, stores, and execute—comparable to the permission
on pages, but at byte rather than page granularity (typically 4KiB). CHERI
capabilities are designed to be used at C pointer. In our work on CheriABI,
we created a process runtime and compilation environment based on
FreeBSD (our fork is called CheriBSD) where all pointers in a program are
CHERI capabilities. This includes pointers returned by mmap().

When setting bounds on pointers in CheriABI, we attempt to follow the
principle of least privilege, which states that no more permission should be
granted than necessary. With pointers returned by mmap(), our initial inclina-
tion was to return pointers with permissions mapped from the requested
page protections (e.g., read and write becomes load and store). This mostly
works but does not work with all usage patterns. First, the runtime linker

12 FreeBSD Journal

makes the initial mapping for each library with no permissions, simply reserving
space. It then maps portions of the file with appropriate permissions. If we
returned a pointer with no permissions, we would be unable to access the file
(or make new mappings with more permissions). Second, JITs need to map
writable to start and then convert those mappings to executable. In both cases,
we need a way to specify the maximum expected permissions of the mapping
in order to create a pointer that has those permissions.

In addressing the problems with mmap() in CheriABI, we wanted our
changes to be minimal. In particular, we wanted the source to continue to work
on non-CHERI systems and ideally for any mmap() extensions to be small
enough to make it easy to apply them to a cross-platform code base. In the
end, we decided to steal some bits from the prot argument and add a second
set of bits for maximum permissions. We created a macro PROT_MAX() to be
ORed with permissions to specify the maximum permissions. For example, a
library mapping previously mapped with PROT_NONE would be mapped
PROT_NONE | PROT_MAX(PROT_READ | PROT_WRITE | PROT_EXEC).
For this code to work on systems that don't support PROT_MAX(), it can easily
be defined to 0. To avoid widespread code changes, we chose to treat the sup-
plied permissions as the maximum permissions unless maximum permissions are
explicitly specified. This required a change to the runtime linker, but, otherwise,
code in the FreeBSD base system just works with this change in behavior.

PROT_MAX() in FreeBSD
When we started exploring W^X, one of the issues that stood out was that vir-
tually all mappings have execute permissions in their maximum permission set.
We realized that PROT_MAX() could address this issue. In June 2019, we com-
mitted a change adding PROT_MAX() support to the FreeBSD kernel. It differs
from the CheriBSD version in that we keep legacy maximum permission logic
unless the program requests PROT_NONE, a sysctl is set to imply the maxi-
mum permission, or procctl is used to explicitly enable implying maximum per-
missions for this process.

Much like W^X, we believe that implying maximum permissions with
PROT_MAX() annotations where required provides the best implementation of
the principle of least privilege and is the right approach. Work is in progress to
test the extent to which maximum permission can safely be implied and we
hope to eventually turn on implying them by default in a future FreeBSD
release.

Compatibility and Limitations
Extensions to mmap() are rarely compatible across platforms. NetBSD has a
similar extension PROT_MPROTECT() which adds permissions to the maxi-
mum permission set relative to the permission set. This has the disadvantage
that is doesn't easily allow maximum permissions to be downgraded later via
mprotect().

We found no similar extensions in other operating systems.

Sept/Oct 2019 13

The PROT_MAX() model does have some limitations. You cannot currently use
it to set a maximum permission of PROT_NONE. You also can't downgrade maxi-
mum permission on a range of pages with mixed permissions without touching
each sub-range separately or setting all of their permissions identically.

A major limitation of page-granularity memory permissions is that most pro-
gramming language objects are much smaller than a page. Linkers group togeth-
er objects that should have similar permissions to allow permissions to be limited,
but it is harder to constrain memory allocated by malloc().

Conclusion
Page-granularity memory permissions are a useful defense against a number of
attacks. In particular, they allow the application of the principle-of-least-privilege
to system memory. More advanced systems such as CHERI's capability-based
pointers allow further application of fine-grained permissions.

This article has covered the basics of machine-independent memory permis-
sions that fit the current mmap() permission model. The architecture-specific
implementations vary and are beyond the scope of this overview as are other
related mitigations such as Intel's Supervisor Mode Access/Execution Prevention
(SMAP/SMEP) and ARM's Privilege-Access-Never (PAN), which are related but pro-
tect the kernel from userspace rather than protecting userspace from itself. •

BROOKS DAVIS has been a FreeBSD developer for nearly two decades and is a member of the FreeBSD
core team. He has worked on network stacks, high performance computing, build systems, and most recently
on enhancing FreeBSD for the CHERI architecture. He currently works for SRI International.

Jails are FreeBSD’s Most Legendary Feature:
KNOWN TO BE POWERFUL, TRICKY TO MASTER,
AND CLOAKED IN DECADES OF DUBIOUS LORE.

Q Comfortably work within
the limits of jails

Q Implement fine-grained
control of jail features

Q Build virtual networks
Q Deploy hierarchical jails
Q Constrain jail resource

usage
And much, much more!

Available at Bookstores Everywhere

FreeBSD Mastery: Jails cuts through the
clutter to expose the inner mechanisms of jails and

unleash their power in your service.

Confine Your Software!
Q Understand how jails achieve

lightweight virtualization
Q Understand the base system’s

jail tools and the iocage toolkit
Q Optimally configure hardware
Q Manage jails from the host

and from within the jail
Q Optimize disk space usage to

support thousands of jails

Confine Your Software!

FreeBSD Mastery Jails BY MICHAEL W LUCAS

