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TLS Offload 
in the Kernel

FreeBSD 13.0 adds support for Transport Layer Security (TLS) socket kernel offload. TLS offload 
permits the kernel to send and receive data over a socket using TLS where the TLS framing and 
encryption is performed in the kernel rather than userland. Kernel TLS (KTLS) requires changes 
to userland SSL libraries, the kernel’s network stack, and, in some cases, device drivers.

Transport Layer Security
TLS is an application layer protocol designed to provide authentication and privacy to upper lay-
er application protocols. TLS is structured as a stream of records, or frames, transmitted and re-
ceived over a stream protocol. (There is a version of TLS for datagram protocols, but KTLS only 
supports TLS over TCP.) Each TLS record contains a header with a message type and length. 
This record layer is used to transport messages defined by the TLS protocol to manage the TLS 
connection as well as application data messages that carry data from an upper layer application 
protocol such as HTTP, SMTP, or IMAP.

A typical TLS connection begins with a few TLS protocol messages used to establish a TLS 
session. These messages are used to verify the identity of the other end of the connection, 
choose a set of encryption and authentication algorithms (known as a cipher suite), and es-
tablish a pair of ephemeral session keys used to encrypt and authenticate subsequent TLS re-
cords. Once the connection is established, the connection switches to passing the upper layer 
application data via application data messages. These application data messages constitute the 
bulk of the messages in a TLS connection.

Application data messages are built from variable-sized blocks of application data. The appli-
cation data is encrypted and headers and trailers are added to form a TLS record (see Figure 1). 
TLS protocol messages are constructed similarly except that the TLS header contains a different 
message type and the payload data of the TLS record comes from the TLS protocol. The format 
of the TLS header and trailer are determined by the specific cipher suite used by the session.

Why Move TLS into the Kernel?
Normally we avoid putting code into the kernel when pos-
sible. User code runs with less privilege and is isolated from 
other processes. A crash in a user process only affects the 
process, and vulnerabilities are constrained to a specific pro-
cess. Kernel code runs with more privilege and is able to ac-
cess all data in the system. Bugs in kernel code have more 
significant consequences. Given that, why add the addition-
al complexity of TLS to the kernel? The reason, as with most 
other code that resides in the kernel, is performance.

There are two main justifications for KTLS. The first is to 
avoid extra copies of data in and out of the kernel. The second 
is to enable the use of TLS offload in network interface cards.

BY JOHN BALDWIN

Figure 1: Constructing a TLS Record
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Avoiding Data Copies
The initial work on KTLS was motivated by regaining the zero-copy performance of send-
file() when using HTTP over TLS. Prior to the advent of sendfile(), the typical workflow 
of FTP and HTTP servers required reading the contents of files into buffers in a user process via 
read() followed by a call to write() to send the data out through a socket (see Figure 2). This 
resulted in three copies of the data: one in the kernel’s buffer cache (or VM page cache) asso-
ciated with the file, a second in temporary buffers in userland, and a third in the socket buffer. 
The sendfile() system call instructs the kernel to send a portion of a file’s contents over a 
socket. With this higher-level request, the kernel is able to reuse the copy of the file data in the 
buffer cache directly in the socket’s send buffer eliminating the additional copies of the file data 
(see Figure 3).

With HTTP over TLS, the sendfile() system call can no longer be used as-is. The data sent 
over the socket is not an exact copy of the file’s contents. Instead, the file data must be en-
crypted and encapsulated in TLS frames. With TLS framing performed in userland, this requires 
a return to the pre-sendfile() workflow. Data is copied from the buffer cache into temporary 
buffers in userland where it is encrypted and framed. This modified data is then copied into the 

Figure 2: Pre-sendfile() HTTP/FTP Workflow

Figure 3: sendfile() HTTP/FTP Workflow
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kernel’s socket buffer (see Figure 4). By moving TLS awareness into the kernel, we can avoid 
one or both of these extra copies.

A similar issue exists with a more recent workflow: NFS over TLS. The NFS client and server 
run in the kernel. They directly move data for files between the buffer cache and socket buf-
fers. While the client and server do copy data between the buffer cache and socket buffers, 
performing TLS in userland would require additional copies into and out of userland.

TLS Offload in NICs
A couple of recent Ethernet cards including the Chelsio T6 and Mellanox ConnectX-6 Dx in-
clude support for inline encryption and decryption of TLS records. For transmit, this permits the 
host to send unencrypted data to the NIC, and the NIC will encrypt the data and split it into 
multiple TCP segments before transmitting the data on the wire. Similarly, for the receive case 
the NIC assembles multiple TCP segments into a TLS record and supplies the decrypted TLS re-
cord to the host. The driver is responsible for providing the session keys to the NIC to permit 
the inline encryption and decryption.

KTLS Requirements
These use cases have similar requirements. sendfile() requires the kernel to have control over 
TLS framing including sequence numbers. Since the sequence number is an input into the au-
thentication algorithms used in TLS, this in turn requires the kernel to manage the encryption of 
all TLS frames on the socket for sendfile(). Encrypting all TLS frames requires userland to pro-
vide unencrypted data for all TLS records to the kernel. NFS over TLS similarly requires full con-
trol over TLS framing in the kernel. TLS offload in NICs requires access to unencrypted data for 
all TLS frames on the socket.

In short, these use cases require moving the TLS record layer into the kernel. However, none 
of these use cases require moving the handling of TLS protocol messages, such as those used 
to establish a TLS session and negotiate session keys, into the kernel. As a result, KTLS moves 
the handling of the TLS record layer into the kernel but leaves the management of TLS protocol 
messages in existing userland SSL libraries.

3 of 12

Figure 4: HTTPS Workflow with User TLS
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This is similar to the approach used with IPsec where key negotiation is performed by user-
land daemons, but individual packets are encrypted and decrypted in the kernel. For IPsec, the 
keys are negotiated over a separate, side-band connection and are shared across several con-
nections. For TLS, the keys are unique to a connection and are negotiated within the connec-
tion via TLS protocol messages. In addition, TLS records and IPsec packets are encrypted and 
authenticated by many of the same algorithms.

KTLS Implementation
KTLS in the kernel consists of three main components. TLS sessions store information about 
one direction of a TLS connection including the cipher suite used, session keys, and a backend 
used to encrypt or decrypt TLS records. KTLS also hooks into the network stack transmit and 
receive paths. While the transmit and receive paths do share some properties, they are imple-
mented differently.

TLS Sessions
TLS sessions manage the encryption and decryption of TLS records. The send and receive sides 
of a TLS connection are managed independently with separate TLS sessions for transmit and 
receive. Each session is described by a struct tls_session object and contains information 
about the session such as the version of TLS, the cipher suite, and the encryption and authen-
tication keys. Sessions are also associated with a backend which performs the encryption and 
decryption.

Three different types of session backends are supported. Software backends encrypt and de-
crypt TLS records while they are present in the socket buffer. They require no knowledge of TLS 
outside of the socket layer. Specifically, protocols such as TCP and device drivers do not require 
any changes to support software backends. NIC TLS backends encrypt and decrypt TLS records 
in a network card as part of transmitting or receiving packets. This requires cooperation with 
the protocol layers as well as explicit support in device drivers. Finally, TOE TLS backends work 
similarly to NIC TLS except that they leverage TOE support to manage TCP state management 
such as retransmits.

KTLS generally treats the send and receive sides of a TLS connection independently. An 
individual connection may only offload one side instead of both. In addition, an individual 
connection may use different types of backends for each side. For example, connections may 
offload TLS transmit in the kernel while handling TLS receive in the userland SSL library, or a 
connection may use NIC TLS to offload TLS transmit and a software backend to handle TLS 
receive.

TLS Transmit
The initial work on KTLS focused on offloading encryption of transmitted TLS records. HTTPS 
server workloads of static content generally transmit significantly more data than they receive. 
As a result, the biggest performance gains for these workloads come from offloading encryp-
tion of transmitted data rather than decryption of received data.

When TLS transmit is offloaded to the kernel, userland applications always provide unen-
crypted data to the kernel. Data sent via system calls such as write() or sendfile() are split 
into separate TLS records by the kernel. These TLS records always use the application data mes-
sage type. Userland can use the sendmsg() system call with a TLS_SET_RECORD_TYPE control 
message to send individual TLS records with a custom type and size. For these requests, the 
contents of the data described by scatter/gather list in the message header is sent in a single 
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TLS record with the message type given in the control message. This is used by the SSL library 
to send TLS protocol messages such as handshake messages and alerts.

A TLS transmit session is created by a TCP_TXTLS_ENABLE socket option. A userland SSL li-
brary invokes setsockopt() with this option supplying an instance of struct tls_enable as 
the option value. This structure includes pointers to the session keys and a description of the 
negotiated cipher suite and TLS protocol version. The socket option handler in the kernel cre-
ates a new TLS session object and probes for a backend. TOE TLS and NIC TLS backends are 
probed by calling down to the device driver for the NIC associated with this connection. If the 
NIC driver does not support TLS or is not able to offload the connection, the handler searches 
for a software backend. If no backend is found, the setsockopt() system call fails and the SSL 
library continues to perform TLS encryption in userland. If a backend is found, a reference to 
the new TLS session is saved in the socket’s send buffer. Existing data in the socket send buffer 
is transmitted as-is, but all subsequently written data to the socket buffer is encapsulated in TLS 
records and encrypted.

TLS mbufs
Each transmitted TLS record is described by a single struct mbuf. TLS mbufs use a new ex-
ternal pages mbuf added in FreeBSD 13. External pages mbufs do not store payload data in a 
virtually contiguous buffer pointed to by m_data. Instead, these mbufs contain an array of phys-
ical address pointers to one or more pages in RAM. This does mean that the traditional way to 
access mbuf data, the mtod() macro, cannot be used with these mbufs. Kernel code paths us-
ing these mbufs were extensively audited for code using mtod().

These mbufs were first added to improve the performance of sendfile(). Previously, send-
file() used a separate mbuf for each page in a file. With external pages mbufs, a single mbuf 
can describe multiple pages. This permits a smaller number of mbufs to describe the same 
amount of file data in a socket buffer. Fewer mbufs means fewer cache misses when walking 
the linked list of mbufs in the socket buffer which improves performance.

Network interface device drivers can choose to support transmitting these types of mbufs 
by advertising support for the NOMAP capability. For device drivers which use existing bus_
dma routines to map mbufs without examining the contents of mbufs being transmitted, no 
further changes are needed apart from setting IFCAP_NOMAP in both if_capabilities and 
if_capenable during their attach routines. Note that a device driver must be able to offload 
checksums for packets containing these mbufs, but checksum offloading is a widely supported 
feature in NICs. If a device driver does not support external pages mbufs or it does not support 
necessary checksum offloading, then the network stack will convert external pages mbufs into 
a chain of conventional mbufs before passing them to the device driver.

TLS mbufs extend external pages mbufs to store TLS-specific information such as the TLS re-
cord header and trailer and a reference to a TLS session. Device drivers which support external 
pages mbufs must also support transmitting the data stored in the TLS record header and trail-
er fields. However, for most device drivers this does not require any specific changes since exist-
ing bus_dma routines already handle these fields.

The ktls_frame() function sets TLS-specific information for TLS mbufs. This function uses 
the TLS session associated with the socket’s send buffer to construct the record. It stores a ref-
erence to this TLS session in the mbuf and populates the TLS header of the record including 
any explicit IV or nonce. Finally, this function computes the length of the TLS trailer accounting 
for any required padding. The TLS trailer’s contents are not set until the TLS record is encrypted 
but setting the trailer length ensures that the mbuf reserves the correct amount of space in TCP 
sequence numbers.
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Software TLS Transmit
When software backends are used, TLS transmit encrypts TLS records in the socket buffer be-
fore they are released to the transport protocol. In the socket buffer this relies on the existing 
M_NOTREADY mbuf flag.

The M_NOTREADY mbuf flag is used to mark mbufs in a socket buffer that do not yet contain 
valid data. These mbufs still reserve space in the socket buffer to provide backpressure to what-
ever is producing data, but they cannot be used by the socket buffer consumer. The send-
file() system call uses these mbufs to reserve space in a send socket buffer for the regions of 
a file that are not already in memory at the time of the system call. Instead, disk I/O requests 
are scheduled to populate these missing pages. When the I/O requests complete, the mbufs 
are marked ready by clearing the M_NOTREADY flag, and the protocol is notified that new data 
is available to send from the socket buffer.

Software TLS transmit reuses this same framework to handle TLS records to differentiate un-
encrypted TLS records from encrypted TLS records. When an unencrypted TLS record is queued 
to the socket buffer by a system call such as write() or sendfile(), the M_NOTREADY flag is 
set on the mbuf describing the TLS record by ktls_frame(). In addition, the mbuf is placed 
on a queue of unencrypted TLS records. A worker pool of threads (one per CPU) services this 
queue. The worker threads invoke the software backend to encrypt each TLS record. Once the 
TLS record has been encrypted, the mbuf associated with the TLS record is marked ready (see 
Figure 5). At this point, the TLS mbuf is now a “regular” external pages mbuf. None of the 
network stack from the protocol layer down to the device driver has to perform any additional 
work to support TLS when using a software backend. The caveat about external pages mbufs 
being converted to chains of conventional mbufs from above still apply, but that can be trivially 
mediated in most device drivers by supporting external pages mbufs.

NIC TLS Transmit
NIC TLS backends require additional changes in the network stack and device drivers beyond 
the changes needed for software TLS. With NIC TLS, unencrypted TLS records are passed 
down through the network stack to the device driver. The TLS record payload is encrypted by 
the NIC after it has been read from host memory via DMA but before it is transmitted on the 
wire (see Figure 6).
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Figure 5: Software TLS Transmit Overview
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To probe for a NIC TLS backend, the handler for the TCP_TXTLS_ENABLE socket option 
uses the route associated with the socket to lookup the network interface servicing the sock-
et. The handler attempts to allocate an IF_SND_TAG_TLS send tag from the interface. This 
send tag will be set on the first mbuf in an mbuf chain that contains one or more TLS records 
from this session.

To pass unencrypted TLS records down to the NIC, the ktls_frame() function does not set 
the M_NOTREADY flag on TLS mbufs when using a NIC TLS backend. NIC TLS mbufs are passed 
directly to the transport protocol at the time they are queued to the socket buffer.

NIC TLS does require a few changes in the TCP and IP protocols. First, TCP must ensure that 
it does not mix “plain” data with TLS records in a single packet. In general, TCP is permitted 
to construct packets which span multiple mbufs in a socket buffer. With KTLS, a connection 
initially contains several “plain” data mbufs. Once TLS transmit is enabled, all future mbufs in 
the socket buffer will contain TLS records. This means that there is a brief window after TLS 
transmit is enabled when the socket buffer contains both types of mbufs. To simplify sup-
port for NIC TLS farther down the stack, TCP does not send packets which contain both types 
of mbufs. This is handled in the tcp_mcopym() function. Second, IP and IP6 output must set 
the send tag on the packet header mbuf at the start of each packet before passing the pack-
et down to the device driver. Since TCP does not mix mbufs of different types, IP output can 
check the first data mbuf in a packet to see if it has a TLS session. If so, it reads the send tag 
from the TLS session and sets it on the packet header mbuf. This is implemented in the ip_
output_send() and ip6_output_send() functions.

Finally, NIC TLS requires support in device drivers. Device drivers must handle requests to cre-
ate TLS send tags. The driver checks that it supports the requested TLS version and cipher suite. 
If so, it allocates a new send tag holding any device-specific state needed for the TLS session. In 
addition, the driver must recognize incoming packets which specify a TLS send tag and arrange 
for them to be segmented and encrypted. This is made more complicated by the fact that TCP 
may choose to send packets which only transmit a portion of a TLS record. Thus, a driver can-
not rely on sending complete TLS records for each request. It may need to send the start of a 
TLS record, the end of a TLS record, or a region in the middle of a TLS record. In addition, since 
TLS implicitly supplies support for TCP Segmentation Offload (TSO), a single TCP “packet” may 
span multiple TLS records.
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A key feature of TLS mbufs is that each TLS record is described by a single mbuf. This en-
sures that a NIC driver can always access the entire contents of a TLS record easily when any 
portion of a TLS record needs to be retransmitted. For example, a NIC may need a record’s 
entire contents to compute the authentication code stored in the TLS record trailer when tran-
siting the end of a TLS record. If a TLS record were split across multiple mbufs, TCP could po-
tentially free mbufs holding ports of a TLS record that have been acknowledged by the remote 
end. In addition, NIC TLS drivers would need a reliable way to find other mbufs belonging to a 
TLS record such as holding extra mbuf references in the driver or examining the socket buffer 
to locate other mbufs belonging to a TLS record. Using a single mbuf for each TLS record re-
moves the need for such complexity and simplifies NIC TLS drivers.

TOE TLS Transmit
TOE TLS uses a data flow similar to NIC TLS for transmitting TLS records. As with NIC TLS, un-
encrypted TLS records are passed in the socket buffer directly to the device driver. However, 
TOE drivers read socket data directly from the socket buffer without relying on software proto-
cols. This simplifies the implementation of TOE TLS compared to NIC TLS.

To probe for TOE TLS, the handler for the TCP_TXTLS_ENABLE socket option checks if the 
current socket is using TOE. If the socket is offloaded, the handler invokes a method on the at-
tached TOE driver to allocate a TLS session.

Similar to NIC TLS, ktls_frame() does not set the M_NOTREADY flag on TLS mbufs when 
using TOE TLS. TOE TLS mbufs are inserted into the socket buffer for immediate consumption. 
TCP invokes the TOE driver output method when data is available. This method reads data from 
the socket buffer and sends it to the associated NIC’s TOE queue for transmit. Since the TOE 
engine on the NIC is responsible for TCP segmentation and header generation, the TOE meth-
od queues complete mbufs from the socket buffer to the NIC. This means that for TOE TLS 
the method is always able to send complete TLS records in one shot without having to han-
dle edge cases for partial record transmit unlike NIC TLS. In addition, since TOE examines the 
mbufs in the socket buffer, TOE TLS does not require a separate send tag but uses the TLS ses-
sion references in TLS mbufs.

TLS Receive
After TLS transmit, kernel TLS receive offload was a natural next step. While web server work-
loads benefit less from TLS receive offload relative to TLS transmit, other workloads using TLS 
with more balanced traffic can benefit from TLS receive offload. FreeBSD does not provide an 
analog to sendfile() (such as recvfile()) for reading data from a socket, so the main justifi-
cations for receive offload are NFS over TLS and supporting TLS receive offload in NICs.

Kernel TLS receive offload uses more invasive changes in both userland and the kernel’s 
socket layer compared to TLS transmit. TLS transmit allows application data to be written di-
rectly as larger writes that are split into multiple TLS records by the kernel. TLS receive, on the 
other hand, returns a single TLS record for each system call. Userland must use recvmsg() to 
read from a socket using KTLS receive as each TLS record is prefixed with a new TLS_GET_RE-
CORD control message containing the TLS record header. This permits the userland SSL library to 
intercept and handle received TLS protocol messages.

The use of control messages for recvmsg() requires the receive socket buffer to be treat-
ed as a datagram socket holding a linked list of records rather than as a stream socket holding 
a single linked list of mbufs representing a stream of data. TCP uses an optimized hook for re-
turning received data to userland (soreceive_stream()) which assumes a stream socket lay-
out in the socket buffer and does not support control messages. For TLS receive, soreceive_
stream() was modified to invoke the generic hook (soreceive_generic()) if TLS has been 
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enabled on the socket. Representing decrypted TLS records as datagrams also permits arbitrary 
mbufs to hold the payload data of TLS records rather than requiring the use of TLS mbufs.

A TLS receive session is created by a TCP_RXTLS_ENABLE socket option. This socket option 
uses the same struct tls_enable value used for enabling transmit. For receive this struc-
ture was extended to add an initial sequence number field. This is used to handle an edge case 
where the SSL client library might have read additional data from the socket after the TLS pro-
tocol message concluding a key exchange. In that case, the userland library will decrypt TLS re-
cords in that pending message in userland. The kernel will only decrypt subsequent TLS records. 
However, the kernel needs to know the TLS sequence number of the first message it decrypts 
since the sequence number is used as in input to the authentication phase of TLS record fram-
ing. For transmit, the SSL client library invokes the TCP_TXTLS_ENABLE socket option before 
sending any encrypted TLS records, so the initial sequence number for the transmit side is al-
ways zero.

Similar to the transmit case, the handler for TCP_RXTLS_ENABLE probes the available back-
ends. If a backend is found, a TLS session is created and associated with the socket’s receive 
buffer. Any data currently present in the socket buffer is treated as encrypted TLS records. The 
mbufs holding this data are marked as not ready via the M_NOTREADY mbuf flag and scheduled 
for decryption before userland is permitted to read them. If a backend was not found, the set-
sockopt() system call fails and the userland SSL library decrypts TLS records in userland.

Kernel TLS receive currently supports TOE and software TLS backends. NIC TLS backends are 
not yet supported. For TLS transmit, software TLS was implemented first and NIC and TOE TLS 
were added later. For TLS receive, TOE TLS was the first backend implemented, and software 
TLS was implemented second.

TOE TLS Receive
TOE TLS receive uses a straightforward data flow (see Figure 7). The NIC delivers decrypted and 
verified TLS records to the TOE device driver. The TOE device driver appends these decrypted 
TLS records directly to the receive socket buffer.

As with TOE TLS transmit, the handler for the TCP_RXTLS_ENABLE socket option checks if 
the current socket is using TOE. If the socket is offloaded, the handler invokes a method on the 
attached TOE driver to allocate a TLS session.
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Appending decrypted TLS records to the socket buffer is straightforward for TOE TLS. The 
TOE device driver allocates a control message mbuf to hold the TLS header. The driver then 
passes this control message along with a chain of mbufs holding the TLS record payload to 
sbappendcontrol() to append the decrypted TLS record as a datagram in the socket buffer.

Software TLS Receive
Software TLS receive operates similarly to software TLS transmit, except that the data flows in 
the reverse direction. Protocols enqueue mbufs containing encrypted TLS records into the sock-
et buffer. These mbufs are marked M_NOTREADY until they have been decrypted, at which point 
they are available for userland applications to read (see Figure 8). As with TLS transmit, decryp-
tion of TLS records is performed asynchronously by a pool of worker threads. However, soft-
ware TLS receive has several differences compared to software TLS transmit.

For TLS transmit, the producer generating data to be stored in the socket buffer knows that 
it is generating TLS records. The producer in this case being a system call such as write() or 
sendfile(). As a result, each transmitted TLS record is stored as a single TLS mbuf. This per-
mits the socket’s send buffer to use the normal layout of a stream socket buffer even though 
it holds a list of TLS records. Software transmit TLS is also able to modify the contents of TLS 
mbufs in place when encrypting TLS records without modifying the linked list of mbufs in the 
socket buffer. Once encryption is complete, the M_NOTREADY flag is cleared from the mbuf 
making the TLS record available for transmission by the protocol layer.

For TLS receive, the producer receiving the data into mbufs that are eventually delivered to 
the socket buffer has no knowledge of TLS. Device drivers receive a stream of packets con-
taining various protocols and belonging to multiple streams. The protocol eventually delivers 
these mbufs to the socket buffer as a stream of bytes. There is no defined alignment between 
mbuf boundaries and TLS record boundaries in this case. A single TLS record can span multiple 
mbufs, and a single mbuf may contain data from multiple TLS records. For example, a TLS re-
cord may begin in the middle of one mbuf and continue on through ten or more mbufs before 
ending. The most natural way to store this stream of mbufs is as a single stream of data as in a 
normal stream socket. However, the data stored in the receive socket buffer for TLS consists of 
a list of datagrams that can be read via recvmsg().

Another key difference between software TLS transmit and receive is the lifetime of mbufs 
in the socket buffer. For both directions of software TLS, the encryption and decryption of TLS 
records is performed by worker threads. These worker threads must ensure that the mbufs 
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being modified by a software backend are not freed while the software backend is perform-
ing the encryption or decryption. When the transmit side of a socket is closed by close() or 
shutdown(), the pending data in the send socket buffer is not immediately freed but is held in 
the socket buffer until it has been sent to the remote client. When the receive side of a sock-
et is closed, however, the pending data in the receive socket buffer is immediately freed. If one 
of the worker threads is currently decrypting a TLS record when the receiver side of a socket is 
closed, TLS receive must ensure that the mbufs are not freed until the decryption has finished.

To handle these differences, TLS receive divides data in the receive socket buffer into three 
classes. While the socket buffer includes all three types of data in its accounting, each class is 
stored differently, and accounting details vary by class.

The first class of data stored in a TLS receive socket buffer are decrypted TLS records. These 
are stored as datagrams in the normal socket buffer chain pointed to by sb_mb. All mbufs asso-
ciated with these TLS records are accounted for the same as in a regular socket buffer including 
counts of mbufs and mbuf clusters in sb_ccnt, sb_mcnt, and sb_mbcnt.

The second class of data stored in a TLS receive socket buffer are raw protocol data contain-
ing encrypted TLS records. These mbufs are stored in a single linked list pointed to by a new 
sb_mtls member.  In addition to the regular socket buffer accounting, sb_tlscc counts the 
number of bytes of this class of data stored in the socket buffer.

The final class of data stored in a TLS receive socket buffer are “detached” TLS records. 
When a worker thread has assembled a chain of mbufs holding an encrypted TLS record, it 
detaches the mbufs from the sb_mtls chain. It then increments a new sb_dtlscc member by 
the count of bytes in the detached TLS record. After the record has been decrypted, the work-
er thread checks to see if sb_dtlscc has been cleared by a call to sbflush() or sbcut(). If 
so, the worker thread frees the mbuf chain. Otherwise, it appends the now-decrypted TLS re-
cord as a datagram to the sb_mb chain. While a TLS record is detached, the socket buffer ac-
counting does not track the mbufs or clusters used by the TLS record. Only the bytes are ac-
counted for in sb_tlsdcc and sb_ccc. This still provides an accurate view of the used space to 
TCP for the purposes of computing the receive window advertised to the remote end of the 
TCP connection.

Logically, these three classes of data are ordered in the socket buffer as the sb_mb chain, 
followed by any detached TLS record, followed by the sb_mtls chain. When sbcut() or sb-
flush() walk the socket buffer to free mbufs, they walk the classes in this order to free data. 
In practice, the only time these functions are invoked on a receive buffer for a TCP socket is to 
flush the entire buffer when the receive side of a socket is closed. The handling of detached re-
cords takes advantage of this by asserting that individual calls to sbcut() or sbflush() always 
free all of the detached TLS record or none of it.

When data is appended by the protocol layer to a TLS receive socket buffer, sbappend-
stream() calls a new sbappend_ktls_rx() function which appends the new mbufs to the 
sb_mtls chain. After the mbufs have been appended, ktls_check_rx() examines the head 
of the sb_mtls chain. This function reads the TLS header of the next TLS record to decrypt (if 
a full TLS header is available) and extracts the length field. It then checks if the length of the 
sb_mtls chain against the length from the TLS header. If the full TLS record has been received, 
ktls_check_rx() schedules the socket for decryption by a KTLS worker thread.

KTLS worker threads decrypt TLS records from the sb_mtls chain. The worker thread first 
detaches the TLS record from the receive socket buffer. This removes the mbufs holding the 
TLS record data from the sb_mtls chain but accounts for their data in sb_tlsdcc. It then in-
vokes the software backend to decrypt the TLS record. Since the record has been detached, 
this is performed without holding any socket buffer locks. After the decryption finishes, the 
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worker thread locks the socket buffer to check if sbcut() or sbflush() were invoked during 
decryption. If not, the worker thread allocates a control message to hold the TLS record header, 
trims the original TLS header and trailer from the original TLS record mbuf chain, and then calls 
sbappendcontrol() to append the TLS record to sb_mb as a datagram.

Final Thoughts
Kernel TLS is an exciting, yet complex new feature in FreeBSD 13.0. At the time of writing, sup-
port for kernel TLS transmit has been upstreamed to FreeBSD’s head branch including sup-
port for software TLS, NIC TLS, and TOE TLS. A ktls_ocf kernel module provides software TLS 
support for AES-GCM cipher suites for connections using TLS protocols 1.2 and 1.3. Since this 
module uses the kernel’s opencrypto framework, it permits TLS records to be encrypted by 
crypto co-processor drivers and not just via software run on the host CPU. Chelsio and Mella-
nox device drivers both include support for NIC TLS, and Chelsio’s TOE device driver includes 
support for TOE TLS. On the receive side, the core TLS receive framework including support for 
TOE TLS has been merged to the head branch. Software TLS receive is still in review but should 
appear in head prior to the release of 13.0. Ongoing work continues to further optimize perfor-
mance as well.

Kernel TLS also requires changes to userland SSL libraries. At the time of writing, OpenSSL’s 
development branch includes support for TLS transmit for TLS 1.0-1.2 on FreeBSD. This func-
tionality is available as a KTLS option in the security/openssl-devel port. In addition, the current 
KTLS patches have been backported to OpenSSL 1.1.1 as a KTLS option for the security/openssl 
port. Support for TLS transmit for TLS 1.3 and TLS receive for TLS 1.1-1.2 is currently in review 
and should land in OpenSSL prior to the release of 3.0.0.

Netflix also developed an extension to nginx to take advantage of sendfile() over TLS using 
the new SSL_sendfile() function in OpenSSL. This is currently available as a patch to the www/
nginx-devel port under a KTLS port option.

Finally, kernel TLS is a large project that has been worked on by several members of the 
FreeBSD community. The current work is the product of iterations and refinements over mul-
tiple years. Scott Long first envisioned moving TLS into the kernel while working at Netflix. 
He worked with Randall Stewart (also at Netflix) to design and implement the first versions of 
software TLS transmit. Drew Gallatin introduced external pages mbufs and their later exten-
sion as TLS mbufs and converted Netflix’s early KTLS to use M_NOTREADY mbufs for software 
TLS transmit. Drew also added a pluggable interface for software TLS backends. I worked with 
Drew to add the infrastructure for NIC TLS transmit as well as support for NIC TLS transmit on 
Chelsio T6 adapters. Hans Petter Selasky added support for NIC TLS on Mellanox ConnectX-6 
Dx adapters. I subsequently worked on TOE TLS and TLS receive. Scott’s, Randall’s, and Drew’s 
work was funded by Netflix. Hans Petter’s work was funded by Mellanox. My work has been 
funded by both Chelsio and Netflix.
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