1 of 10

Building and Running
an Open-Source Community—
The FreeBSD Project

Bill Joy, then a graduate student at UC Berkeley. He ran it out of the office he shared

BY MARSHALL KIRK MCKUSICK
“with four other students. Today it has thousands of developers and is used by untold mil-

lions of people around the world. This is the story of how we got there.

FreeBSD is an open-source operating system derived from 4.4BSD-Lite released in 1992 and
1994 by the University of California at Berkeley. FreeBSD is one of a very few open-source proj-
ects still active after more than 25 years.

The typical life cycle of an open-source project is that a person, or sometimes a small group
of people, get excited about doing something and hack up a bunch of code for it. What typi-
cally ends up happening is that they finish with the idea, or the leader of the group gets bored
and moves on, and the project dies. If you look at SourceForge or GitHub, 90% of those proj-
ects are “dark,” meaning they have not had any commits to them for at least a year. An open-
source project with longevity has to have some method for passing leadership from one person
to another. Much of this article looks at FreeBSD’s governance structure and how it has evolved
over time.

he Berkeley Software Distribution (BSD) started out as a part-time effort of

Current Users of FreeBSD
Today, FreeBSD is most heavily used to provide core Internet support. FreeBSD is used to oper-
ate root name servers, major web hosts, routing infrastructure, and as the foundation for ma-
jor commercial operating systems. Some examples include Netflix content distribution servers,
which are the source of one third of all Internet traffic; New York Internet, which does much
of the network infrastructure on the East Coast; and the BBC, whose servers are primarily run-
ning on FreeBSD. Juniper Networks routers and Network Appliance file servers are built on top
of FreeBSD. FreeBSD is heavily used in the appliance and embedded operating system market
where companies need to put their intellectual property inside the operating system so they
cannot use Linux due to its GNU Public License (GPL). | discuss the GPL later in this article.
Verisign uses FreeBSD to handle their critical Internet name service lookup. They use FreeBSD,
Linux, and commercial operating systems because they want a diversity of operating systems
In case there is a zero-day exploit in one of the operating systems. When a zero-day exploit
happens, they can take down the affected systems and not lose their service, as their service
must be up and running at all times. They value FreeBSD because it is a small enough niche
that there is not a lot of targeting of it. It is hardened enough that it is harder to crack it than to
crack other operating systems and part of FreeBSD's security derives from its code base chang-

FreeBSD Journal « July/August 2020 |25



2 of 10

Ing slowly. Less known is that FreeBSD is the operating system used on the Sony PlayStation
4 and later. Apple’s Darwin, the base operating system in Mac OS X, is directly derived from
FreeBSD.

CSRG at Berkeley

| will start with a bit of history, rolling back the clock to the 1970s and 1980s
when BSD was being developed at the University of California at Berkeley. BSD
started at Berkeley in 1977 as a one-man project run by Bill Joy (who went on
to be one of the founders of Sun Microsystems).

The first distribution was called the BSD distribution. It was released in early
1977 and consisted of just three utilities that Bill wrote that would run on UNIX:

ethe C shell,

ethe ex/vi editor, Ty
ethe Pascal compiler/interpreter ‘

You would just add these utilities to your existing version of UNIX. Typically,
you were running Version 6 UNIX, also known as Sixth Edition UNIX or V6. As users convert-
ed to Version 7, which was released in 1979, they could take the BSD utilities with them. There
were additional utilities that were added to the 2BSD release in May 1979.

Up to this point, UC Berkeley was running UNIX on Digital Equipment Corporation PDP-11
machines. The PDP-11 had a 16-bit address space and thus had a maximum of 64K bytes of
text plus 64K bytes of data. UNIX was a swap-based system. UNIX read programs into memory
to run them and freed the memory when they were done.

In 1978, Digital Equipment Corporation released their 32-bit VAX computer (VAX stood for
Virtual Address eXtension). Berkeley was an early adopter, receiving a VAX with serial num-
ber 7 with its maximum memory capacity of four megabytes. The VAX was the first hardware
on which UNIX ran that supported virtual memory. The vendor-supplied operating system for
the VAX was VMS, which was mostly a batch system. Its initial front end was a primitive com-
mand-line interface for interactive use that was not liked by people who were used to UNIX.

The initial port of UNIX to the VAX (32/V) was done at Bell Labs by John Reiser and Tom
London and did not use the virtual memory hardware. It ran as a swap-based system just like
the PDP-11. So, you could not run any program larger than physical memory.

Users at UCB were working with Franz Lisp, which needed far more address space than the
four megabytes of physical memory on Berkeley's VAX. VMS did support virtual memory, but
its interface was not to their liking. So, Bill Joy ported Ozalp Babaoglu’'s VM system into UNIX
/32V over the four-week Christmas break. The port was stable enough by a couple of weeks
after the Christmas break, so it permanently replaced VMS usage at Berkeley.

The release containing the VM system became 3BSD and was released in 1979. The 3BSD dis-
tribution was the first Berkeley distribution containing the whole kernel, the utilities and libraries,
etc. Distributing complete systems became the model of the BSD distributions still used to this day.

The Defense Advanced Research Projects Agency (DARPA) funded a lot of early comput-
er-infrastructure research. DARPA was interested in having a common machine and operating
system that would be used across all the DARPA projects so they could easily move code devel-
oped by their supported groups between their projects.

DARPA wanted to have other features added, most importantly an implementation of TCP/IP
to replace their earlier NCP networking infrastructure as NCP supported only 254 hosts.

Berkeley got one of the DARPA contracts to “harden” the BSD kernel and help integrate
the networking code. This contract led to the formation of the Berkeley Computer Systems Re-
search Group (CSRG).

Photo courtesy Ollivier Robert

FreeBSD Journal « July/August 2020 |26



30f 10

After its humble start in Bill Joy's office, the CSRG eventually grew to a staggering four peo-
ple. They would spend a lot of time talking with other people finding out what they were do-
ing with the system, getting their improvements, their new utilities, and bringing them back
and getting them incorporated into the system.

In the 1970s, the network was composed mainly of dialup links running at 1200 baud. Most
of the contributions to the CSRG came on a nine-track tape, though occasionally it was sent as
an email attachment across a painfully slow link.

In the early 1980s, CRSG started using a source code control system from Bell Labs called
SCCS. For the first time, SCCS allowed them to keep track of all the changes that were being
made to the system, who made them, and the reasons that they were made. Using a source-
code control system was a novel concept back in the early 1980s.

As a DARPA contractor, the CSRG was given access to the ARPAnet (which is what eventual-
ly became the Internet). The ARPAnet made it possible to expand the set of people who could
work on the system. In particular, the CSRG had network connectivity that allowed others to
actually log into their machines remotely, thus avoiding expensive long-distance charges when
using modems to connect cross-country or further. Most importantly they had a source code
control system so they could avoid collisions and keep track of who was doing what.

Initially, the CSRG gave accounts on CSRG machines to 10 other trusted people who could
log on and update sources. This approach was far more efficient than the previous receipt of
tapes and email that had to be integrated by CSRG staff. The selected people were those who
had been making a lot of contributions and understood the way that CSRG liked to have things
done. They would coordinate some set of people with whom they were working, thus increas-
ing the total number of active contributors to about 100 people.

CSRG staff used SCCS to track changes and verify them before doing distributions. A key
role of the CSRG was to ensure that the system as a whole remained consistent. Before each
distribution, the CSRG team would have the source code control system list everything that had
been changed since the last distribution. In those days, the list of changes could be printed out
because it was not too huge. The CSRG team would go through and look at every single one
of the changes that had been made, make sure that it fit in, and that it didn't break something
that was going to affect some other program. When a change was found, say, in the “diff”
program that broke the “patch” program, they would contact the folks that made the changes
so they could sort out the program that needed to be fixed up.

This structure formed the basis for the current BSD-based projects having:

®3 Core group overseeing the development,

*a larger set of people who are doing commits into the system, and

ean even larger set of people that are feeding the people doing the commits.

FreeBSD Project Structure

The FreeBSD Project currently uses Subversion for its source-code-control repository. The Project
is in the process of moving to using Git as Subversion as Git is more widely used and under-
stood. Anyone can download the repository, but only a subset of the people involved with the
project are allowed to update it.

A FreeBSD distribution consists of the core system of about 100 libraries and 750 utilities
plus the symmetricmultithreaded kernel that runs on Intel/AMD 32/64-bit, ARM 32/64 bit,
MIPS, PowerPC, RISCG-V, and other processors.

All other software is maintained in the ports collection that currently has over 32,000 pack-
ages. The ports are organized based on different functionality: software development, web

FreeBSD Journal « July/August 2020 |27



4 of 10

hosting, routing, etc. The ports collection has a database that allows users to look up what
they want. The ports come in two flavors: users can either download the source code and
build it themselves, or there is a package where it is maintained in a compiled state for the vari-
ous architectures, so they can just download the binaries.

Releases
FreeBSD has a formal structure for the way that it releases software. The top of the develop-
ment tree is known as Current and that is where ongoing development is done.

Periodically, FreeBSD branches off from Current and builds a new base distribution referred
to as a Stable branch. Bug fixes are first made to Current, then tested. After they have prov-
en to be reasonable and stable, those changes get migrated down into the Stable branches
through something called an MFC (move from Current). The checkin to the Stable branch from
Current references the particular change that was made to the Current tree. The application bi-
nary interface (ABI) is never changed during the lifetime of a Stable branch.

Many projects just have the current release because they do not want to support the old-
er releases as it takes a fair amount of effort to keep maintaining them. Because FreeBSD is
used by a lot of companies that build embedded systems, it is important that FreeBSD continue
some maintenance of earlier releases for a significant period of time. Historically FreeBSD has
attempted to continue providing at least security-level maintenance of the older releases for up
to five years.

The FreeBSD Community

Most contributors to FreeBSD are volunteers. A relatively recent phenomenon is that some
companies hire people to liaise with the FreeBSD Project and make sure that problems fixed by
the company get upstreamed.

The key to understanding an open-source project is to understand how to make the project
appealing to volunteers. Volunteers only do what they want to do. They are not working for
you as they would have been in a traditional software development company where you have
a manager, you are paying your employees, and the manager tells the employees what they
are going to do. It may be some task that is not particularly desirable, but somebody will be as-
signed to do that task, and they will get it done because that is their job.

In an open-source project, the workforce is people volunteering their time. They do not tend
to volunteer to do stuff they are not interested in doing. They only do the things they want to
do. Their open-source project contributions are their lowest priority (after work, family, recre-
ation, etc.). So, if some crisis occurs at work, or they have family issues, or they want to go on
vacation, all those things take precedence over their development. The best of intentions can
be preempted by other priorities. The effect of being the lowest priority is that you do not real-
ly have a schedule.

Volunteers are transient. Most people who work on an open-source project get excited, they
work on it for a while, then they lose interest, and they go off and do other things. Most peo-
ple do not make a lifetime career working on one particular project. So, projects need to plan
for and deal with transience. If they fail to do so, they end up having a lot of deadwood, which
eventually weighs the entire project down. Failing to eliminate dead wood is one of the com-
mon reasons that projects fail or go dark. The people who are deadwood need to leave.

Open-source projects need to be self-organizing since they typically have no paid staff or
managers. To have long-term success, projects need to be democratic and all members should
be able to advance up the project hierarchy based on their contributions to the project. Linux
is the obvious exception to this rule where Linus Torvolds started and still runs the project. But

FreeBSD Journal « July/August 2020 |28



50of 10

even Linux is going to have to find a path to new leadership.

The usual cause of failure for an open-source projects is that the grand leader and their set
of friends control the project. A newcomer who wants to get involved can rise up only so far.
They can never move into the leadership role, or, often, even become a direct report to the
leader. A successtul project has to be able to change the leadership. Otherwise the leadership
becomes deadwood, which leaves the project rudderless.

A project must anticipate turnover and manage it gracefully. The problem gets back to the
whole issue of transients. The project needs to have a system for getting rid of the deadwood.
It has to be a very clear and transparent system, where it is obvious that it is not the people in
charge who are picking on people. There must be criteria for remaining involved with the proj-
ect. Everybody has to meet those criteria and when you no longer meet those criteria, it is time
to leave. In the FreeBSD Project, the criterion for remaining a project committer is that you must
make a commit once every 12 months.

Organization
The organization of the FreeBSD Project is made up of four concentric rings.

The outermost ring is the users. The FreeBSD users can send and receive feedback for bugs and
interact on FreeBSD run mailing lists. Most users are not involved in the development, but some
will send and receive feedback for bugs.

Figuring out the number of users of an open-source project is difficult. Often the number is
based on the count of downloads of the project’s software. Projects like to count downloads,
then have some multiplicative factor to decide how many users that represents. Since the soft-
ware is free, many people will download it but never end up using it. At the other extreme,
one download might be for an entire company like Netflix that then deploys it across thou-
sands of machines. Figuring out the balance between these extremes is all but impossible. So,
the FreeBSD Project just publishes the number of downloads and lets others choose the factor
to use.

Inside the user ring are the developers, who number about 6,000. It is hard to get an exact
handle on the number of developers. This estimate is based on how many uniqgue names have
posted to bug lists, how many unique names have posted to various mailing lists, and how
many people are credited with code coming into the source tree.

The developers are more directly involved in the Project. They are writing code, sending in
bug reports, interacting with the Project to get stuff done. Developers have read access to the
source-code repository. If they have changes that they want to put back into the system, then
they need to find someone who has the right to commit to the source code tree. They then
submit their changes to those committers (committers are described in the next subsection).
Making a direct connection with a committer is the best and usually quickest way to get a
change made though the change can be submitted by sending a pull request.

Committers are the people permitted to make changes to the system. In recent years, the num-
ber of committers has varied between 350 and 400. Most committers are authorized to com-
mit changes to specific parts of the system. Most commonly, the committer will be associated
with a particular set of ports in the ports tree for which they agree to assume responsibility.
They will have commit privileges for that set of ports. If they want to make changes in other
parts of the system, then they need to get their commit privileges expanded.

FreeBSD Journal « July/August 2020 |29



6 of 10

Ports typically do not have as much oversight as parts of the core system and the kernel.
Typically the person in charge of dealing with the port does not need to check with any other
committers. The community from which that port comes, for example Apache, already has a
lot of oversight going on. So the job of the committer is to keep FreeBSD up-to-date with the
current release of Apache. The committer is welcome to go get other opinions, but they are
not required to do so, and they generally do not need to do so.

All changes to the core system and the kernel require review by at least one other commit-
ter. The commit message must list who did the review. All commit changes are mailed to all
committers, so anyone listed as having done a review can speak up if they feel that their feed-
back had not been resolved.

Committers are the gateway to feed in the changes from the developers. Developers find
committers who are working in their area of interest. They typically find the relevant commit-
ter by looking at who has been actively making changes in the code that they are interested in
changing and contacting them directly.

They work together to get their changes put in. When one of these developers begins to
become more involved, the committer can nominate that developer to become a committer.
The process of becoming a committer is somewhat involved. Once a developer gets nominated
by a committer, the Core Team (described in the next section) will make a decision.

A new committer is required to have a mentor who is typically the committer that nominated
them. The mentor is responsible for ensuring that the committer is not shooting themselves in
the foot. The mentor helps the developer learn what they need to know: how the source-code
control workflow is managed; how to use Phabricator (the forum that provides pre-commit code
review workflows); how to use Bugzilla (the forum that tracks bug reports); where to find out
the Project’s coding styles; on which mailing lists to post review requests; which changes require
a broader review; even small details such as on which IRC channel they should engage.

Mentorship generally ranges from a few months to more than a year. Somebody who is very
active in the Project can get through the mentoring process much more quickly than some-
one who is working more intermittently. Most of the committers appreciate having a mentor
as they do not want to do something that is going to be viewed as wildly stupid or out of track
with the way the Project works. Often even after the mentor releases them to be on their own,
they still continue to request the mentor to keep reviewing their changes.

The Project needs to deal with the unfortunate but important task of identifying and retiring
commit privileges from the committers who are no longer contributing. The Project needs to
have a well-defined and uniformly applied policy in place to retire inactive committers.

The FreeBSD retirement policy is the automatic suspension of commit privileges after one
year of non-use. For the six months after suspension, commit privileges can be restored by sim-
ply requesting that they be reactivated. After 18 months of non-use and six months of being
suspended, a retired committer has to go through the whole nomination and mentoring pro-
cess again.

The reason for repeating the nomination and mentoring process is that the way the Project
works changes over time. New rules and procedures get put into place. Major tools may have
changed, such as a switch in the source code control system. New tools such as the Phabricator
review system may have been added. There may have been changes in the bug-tracking sys-
tem. Often there has been a reorganization of the mailing lists, IRC channels, etc. The returning
committer needs somebody to get them back up to speed. The mentoring period is often short
for people returning to the Project as committers.

Avoiding the loss of commit privileges is really a minor threshold to get over. Retaining com-
mit privileges requires only one commit per year and can be done by updating your personal

FreeBSD Journal - July/August 2020 |30



7 of 10

information (what people can see when they pull up “who is this person”). So, the hurdle is
about a millimeter high.

A recent study of the Project demographics found that the average age of the committers
s 39; the median age is 37; the youngest is 25; the oldest is 68; and the biggest group is con-
centrated in the 31 to 40 age range.

Most of the people coming onto the Project have been doing software development for at
least a decade. They typically start in their teens so by their mid-to-late 20s they have 10 years
under their belts. Many of the people come from the Linux world where they have risen up as
far as they can go. They are feeling as if they would like to be able to move up further. They
find out about FreeBSD, they see how it is set up and they like it, so they come over and join
the Project.

While the Project has had committers in their teens, the benefit of a slightly older demo-
graphic is that they are past their "youth angst,” which means that they have gotten over
squabbling on mailing lists. They tend to be a little more mature in their discussions with far
fewer ad hominem attacks.

It is important to avoid fights on the mailing list, particularly ad hominem attacks. So the
mailing lists are closely monitored. It people start getting into too much of a rat hole or just
personal attacks, they will be pulled aside and told to take that off the list. It does not take
much to poison a list and it is very hard to get it back on track once that has happened.

The Project is headed up by the nine-member Core Team. Their role is to oversee and manage
the FreeBSD Project.

The history of who is in charge of the Project evolved over time. When the BSD Project start-
ed at Berkeley it used ““the lord and master” approach. A single person made the final deci-
sions. The BSD Project was started and run by Bill Joy until he left to go to Sun Microsystems.
Mike Karels took over and then later Kirk McKusick (your humble narrator and author of this
article).

When the BSD Project was spun off by Berkeley and it passed to the outside world, several
distributions sprang up, including those by Bill Jolitz and later NetBSD and FreeBSD. This article
focuses on the evolution of FreeBSD.

When the FreeBSD organization was set up, the organizers decided to set up a group of
seven people called the Core group that were in charge of overseeing the Project. The original
Core group was self-selected. The people who set up the Project deputized themselves onto
the Core Team. They were “Tsars for life.”

As IS common in open-source projects, some began to lose interest. There was no mecha-
nism to replace them and most did not want to leave because of the prestige of being on the
Core Team.

A group of people got together and decided to write a set of bylaws that included a provi-
sion to make Core an elected position. Core was also expanded to nine people. The entire Core
s elected every two years. Core members are nominated from and elected by the committers.
Any active committer can run for Core. Candidates are self-selecting and no nomination is re-
quired.

Each candidate puts up a statement as to why they should be elected to Core. In recent
years, there have been a series of “office hours” where Core nominees show up to answer
guestions and expand on their vision for the Project.

After a prescribed number of weeks, the election is held. Every committer gets nine votes.
The top nine vote-getters become the next Core. Though there have been efforts to install
term limits, at present there are none. The electorate are very cognizant of who on Core is get-

FreeBSD Journal « July/August 2020 | 31



8 of 10

ting things done and who works and plays well with others. The deadwood can continue to
run, but they tend not to get reelected. Historically three to four Core members have turned
over every two years.

A primary responsibility of the Core Team is to oversee the groups that run the Project.
These include:
ethe group that administers the Project servers,
ethe group that does release engineering,
ethe group that manages the QA and continuous integration testing,
ethe people that organize and run FreeBSD summits,
ethe group that handles security issues,
ethe group that oversees the ports repository,

eand the group that oversees the system documentation.

An important task is to organize running the FreeBSD Summits where people actually using
the system talk about what they are doing, what they need, and what they would like to see. A
key takeaway from a summit is a list of tasks for which someone has volunteered to do some-
thing. Indeed, the summits often provide a wealth of ideas that become part of the roadmap that
lays out the big vision of what needs to be done. Most important is getting the roadmap imple-
mented, which involves encouraging people toward getting some of their ideas implemented.

Core is also responsible for adding and removing committers. As already described, re-
quests for bringing in a new committer are submitted to Core. Core reviews the request,
ensures that one or more suitable mentors have been found, and if all is in order approves
the request. Committer removal typically occurs through the timeout mechanism described
above.

Another important role for the Core Team is to resolve differences between committers.
Most of the time, differences get hashed out on a mailing list or an IRC channel. Sometimes
there is a difference in philosophy, and the parties are unable to sort it out. Occasionally,
these devolve into “commit wars.” Something is checked in, it gets ripped out, it is checked
back in again, etc. Here, Core needs to step in and arbitrate.

The tool that Core has to enforce decisions is the ability to temporarily suspend commit
privileges. For example, in resolving a commit war, Core can impose a cooling-down period.
Neither party will be allowed to commit anything for two weeks. Very rarely, a committer’s
commit privileges can be permanently removed. Complete removal has only happened twice
In the history of the Project. A very small number considering the many thousands of com-
mitters over the history of the Project.

Types of Contributors

There are many different types of contributions and it is important to have a broad view. There
IS not a hierarchy where kernel committers are better than utilities committers, are better than
documentation committers, etc. Some other projects have hierarchies such as these but in the
FreeBSD Project there is no higher value attributed to one type of contribution over another.
People contribute in the areas in which they are skilled.

Some of the areas in which people contribute:

e Port maintainers (196 committers made 27,840 commits to Current in last 12 months).
These commits do not count MFCs and other changes that would increase the total by
perhaps 50%.

e Utility maintainers (193 committers made 4,334 commits to Current in last 12 months).
They are maintaining 775 utilities and libraries. These commits do not count the one to two

FreeBSD Journal « July/August 2020 |32



9 of 10

additional MFCs for each of these commits.

eKernel maintainers (71 committers made 6,056 commits to Current in last 12 months).
These commits do not count the one to two additional MFCs for each of these commits.

e Documentation group (75 committers made 2,076 commits to Current in last 12 months).
One commit is likely an entire section of a manual, or an entire manual (man) page, which
are typically much larger than the coding commits. One of the strengths of the FreeBSD
Project is that it has better documentation than most other open-source projects. Today
the documentation is set up with multi-language support. Most documentation is available
in about 10 languages.

e Security team (7 members). Most of the time, they do not have a lot to do, but when a se-
curity threat comes up, they have to jump on it now! For example, Heartbleed. Having sev-
en team members allows coverage 24 hours per day. There are people in the U.S., Austra-
lia, Japan, India, Eastern Europe, and Western Europe.

e System administrators (7 members composed of 5 website and 2 email). A thankless but
very necessary task. The Project has websites, a lot of online documentation, numerous
mirrors that need to be maintained, mailing lists, build servers, development machines, etc.

eRelease engineers (1 main, 10 helpers) During the actual release phase, the number of
helpers jumps dramatically.

e Quality assurance (2 main, 5 helpers). This is the newest group at FreeBSD. Many open-
source projects do not have such a group.

Advocacy and marketing group (2 main, 6 helpers). Around a decade ago, a member of
this team was elected to Core. It led to a logo change and to a total website overhaul. These
changes demonstrate that Core is about more than coding; it is also about running and pro-
moting the Project.

Licensing

Most commercial software is developed using a traditional copyright. Usually the source is not
available or is only available in very restricted ways often requiring the signing of a nondisclo-
sure agreement. Recipients may not even be allowed to modify the source and certainly cannot
pass it out to anybody else. Since open-source projects generally want their source code to be
given away, they do not use traditional copyrights.

Open-source software commonly uses the GNU Public License (GPL), sometimes referred
to as a "“Copyleft” license. Software covered by the GPL version 2 (GPL 2) license must make
source code available including any changes that have been made to it. With the more restric-
tive GPL version 3 (GPL 3) license, in addition to making your source code available, it any of
that source code is covered by your patents, you have to make those patents available at no
cost for use by anyone who uses your code. The GPL 3 license has caused a lot of consterna-
tion. Many companies got around the GPL 2 license by patenting the ideas in their code. They
release their source code as required by the GPL 2 license but then require anyone using it to
pay patent royalties. This approach was against the spirit of GPL which is why the GPL 3 license
was created.

The Linux kernel is under a GPL 2 license, which means that any code written to run as part
of the Linux kernel must be released. Some companies use their patents to control its use by
others. Many companies avoid having to release their source code by creating loadable binary
modules that are loaded into a Linux kernel. Loadable modules are a controversial way of avoid-
ing the GPL terms.

Linux has not changed over to a GPL 3 license. But a lot of the other GNU software is under
the GPL 3 license, including most of the rest of the software that is packaged around the Linux

FreeBSD Journal « July/August 2020 | 33



10 of 10

kernel including the GCC compiler and its libraries. It is not yet clear if, when loading the GPL 3
libraries, your program becomes subject to the GPL. The GPL 3 license has made a lot of com-
panies nervous, which has helped projects with a Berkeley license.

The other common approach is the Berkeley license. Sometimes referred to as a “Copy-
center” license, as in take it down to the copy center and make as many copies as you want.
Source and patent rights may or may not be provided, i.e., you can give back your changes, or
not, as you choose.

FreeBSD uses a Berkeley license, which has played a big role in its success, particularly with
companies that have their proprietary code in the kernel. In practice, the FreeBSD Project gets
back about as much code as do GPL open-source projects. But it takes longer as there is a
learning curve.

Company X builds their proprietary product on FreeBSD and they choose not to give any-
thing back. Later, the time comes to upgrade the underlying FreeBSD to the next version. They
need to port many bug fixes they have made, and they have to port all of their changes. It is a
long and expensive process. They realize that if they had given back their bug fixes they would
have just been there. So, this experience leads to an incremental amount of bug fixes com-
ing back. Two years hence, they upgrade to the next release. They realize that many of their
changes are not really proprietary. If they contribute them back, then someone else will main-
tain them. By the third upgrade cycle, the company is trying to give back code that is specific to
their product. The result is that companies start hiring committers to give them a direct channel
to what is changing in the system and to facilitate getting their bug fixes and enhancements
merged back into FreeBSD.

Conclusions

Building an open-source community requires an ongoing effort. It is tempting to cling to do-
Ing things the way that they have always been done. To maintain its vitality, the Project must
adapt to the needs of its users as they evolve over time. The community must be welcoming to
newcomers and provide a path for their advancement. Newcomers need mentors to help them
get integrated into the community. At the same time, the mentors need to accept the new ap-
proaches that are being brought to the Project. The FreeBSD Project has managed to success-
fully balance these needs for more than a quarter of a century. | am hopeful that they will con-
tinue to do so for many more years to come.

DR. MARSHALL KIRK MCKUSICK writes books and articles, teaches classes on UNIX- and
BSD-related subjects, and provides expert-witness testimony on software patent, trade secret,
and copyright issues. He has been a developer and committer to the FreeBSD Project since its
founding in 1993. While at the University of California at Berkeley, he implemented the 4.2BSD
fast filesystem and was the Research Computer Scientist at Berkeley overseeing the develop-
ment and release of 4.3BSD and 4.4BSD.

FreeBSD Journal < July/August 2020 | 34



