
16FreeBSD Journal • September/October 2020

Software is written by imperfect people. As a result, software itself is imperfect as it re-
flects gaps and misunderstandings in developers’ perceptions of both the problem being
solved and the software serving as the solution. These gaps and misunderstandings man-

ifest as bugs resulting in incorrect behavior, inconsistent behavior, crashes, data loss, etc. One
of the tools to aid in mitigating this is having additional developers review source code. While
these developers themselves are also imperfect, the various gaps and misunderstandings will
vary from person to person. Hopefully, the more developers who are able to examine a given
piece of source code, the more likely it is that bugs in the software can be found. In addition,
code review can promote “conceptual integrity” as described by Fred Brooks in The Mythi-
cal Man-Month. In other words, code review by developers familiar with the overall design of
a system can help ensure that new changes are consistent with the system’s design, or that
changes “do things the way this system normally does them.”

Over time, the FreeBSD Project has grown a culture of code review. While code review is
not mandatory for changes, the ratio of committed changes that are reviewed continues to in-
crease. When I first became involved with the Project in the late 1990s, code review was fair-
ly informal, especially for changes to the source tree. The changes that were reviewed typically
took place in private email threads, over IRC, or, on occasion, in person. During code freezes
for releases, code review was somewhat mandated in the form of approval by the release engi-
neering team for code freeze commits. However, this approval was generally focused on a risk
assessment of the changes relative to the stability of the upcoming release, rather than on the
quality of the code itself. Ports developers have had a stronger review culture than the source
tree, and several years ago a couple of ports developers stood up an instance of the Phabrica-
tor code review tool to review FreeBSD patches. While the initial focus was on providing a bet-
ter mechanism than Bugzilla for reviewing patches to ports, several source developers began
using it as well.

Tools like Phabricator offer several advantages relative to some of the other systems FreeBSD
has used. Reviews often include discussions about various trade-offs or assumptions made by
new changes. When these reviews occur in private email threads, that knowledge is only avail-
able to the individuals on the private thread. When those reviews occur in Phabricator, those
discussions are archived and can be found via a URL from the commit that added the changes
to the tree. At the same time, Phabricator permits developers to limit which reviews they wish
to participate in without requiring all developers to wade through all of the review comments

BY JOHN BALDWIN

1 of 3

17FreeBSD Journal • September/October 2020

on every change. Unlike Bugzilla, Phabricator permits comments on individual lines of a patch.
Recent versions of Phabricator include the ability for reviewers to type in code snippets as a
suggestion that can be applied to a pending change.

Effective code review requires cooperation both from developers submitting patches for review
and developers reviewing changes. The rest of this article will focus on best practices when using
FreeBSD’s Phabricator instance, though similar guidelines are applicable to reviews over other me-
diums such as email. Some of these guidelines may also be useful in non-FreeBSD contexts.

When submitting patches, a developer should:
• Upload a patch with full context. Uploading patches using the arcanist tool (from the
devel/arcanist port or package) will include this by default. If generating a diff from a
version control system, force the diff to contain the full context. When using diff, git
diff, or git show, add the -U999999 argument on the
command line. To generate a diff in a subversion check-
out, use svn diff --diff-cmd=diff -x -U999999.
Including full context allows developers to see other por-
tions of the code around a change.

• Provide the commit log for the proposed change in the
description of the change. This allows reviewers to re-
view both the code and the commit log describing the
change. Writing a proper commit log is a topic for an-
other article.

• Tag relevant groups as reviewers. For example, for a
change to the PCI bus drivers, add the #PCI group.
Some groups use rules to auto-add groups for files in
certain paths. For example, changes to the bhyve hyper-
visor are automatically tagged with the #bhyve group.

• If the patch submitter has been working with specific
developers prior to submitting the patch for review, add
those developers as either reviewers or subscribers.

• For FreeBSD source changes, try to format your code
based on the guidelines in the style(9) manpage. Some
of the guidelines can be ambiguous, and patches do not
have to be perfect. However, the closer you are to the
existing style, the fewer changes you will have to make later on and the more likely other
developers will be willing to review your changes and, if necessary, shepherd them into
the tree.

• If a reviewer approves your patch but includes comments stating that the approval is
conditional on some changes being applied, then the approval is only valid if the patch
submitter makes the requested changes. If, on the other hand, a reviewer approves the
patch but includes additional comments that are not required for approval, it is up to the
patch submitter to decide whether to make the requested changes. Once a patch has
been approved, it can be committed without requiring another upload to Phabricator for
explicit approval of requested changes.

• Be patient.
• Be responsive to feedback.

2 of 3

Effective code
review requires
cooperation
both from
developers
submitting patches
for review and
developers
reviewing changes.

18FreeBSD Journal • September/October 2020

When reviewing changes, developers should:
• Review the design first and before smaller fixes like style. If a change is fundamentally
incompatible with the system architecture, it is a waste of everyone’s time to require a
submitter to restyle the patch only to then reject it on architectural grounds. While some
general pointers to style rules may make sense when discussing design, the initial review
should focus on the design and structure of a patch.

• If critiquing the design or structure of a patch, provide constructive criticism including al-
ternative designs or methods for achieving the desired outcome.

• Respond in a timely manner. Especially if a reviewer has responded and addressed earlier
feedback, it is important to approve the change and/or merge it into the tree.

• Be willing to approve a change that still needs some changes if you trust the submitter to
make any needed changes before committing. When requesting changes on such a re-
view, be explicit if further changes are either optional suggestions (so can be committed
with or without), or if they are mandatory fixes that must be applied before the approval
is valid.

• Be willing to recognize that some suggestions are really preferences and categorize them
as such rather than as mandatory fixes.

• When noticing a pattern of necessary changes (e.g., a style rule that the submitter might
have misunderstood or not known), rather than pointing out every flaw on the first re-
view, point out a single instance with a reference to the general rule and let the submit-
ter have a chance to resolve the issue throughout the patch.

JOHN BALDWIN is a systems software developer. He has directly committed changes to the
FreeBSD operating system for 20 years across various parts of the kernel (including x86 plat-
form support, SMP, various device drivers, and the virtual memory subsystem) and userspace
programs. In addition to writing code, John has served on the FreeBSD core and release en-
gineering teams. He has also contributed to the GDB debugger and LLVM. John lives in Con-
cord, California, with his wife, Kimberly, and three children: Janelle, Evan, and Bella.

3 of 3

Thank you!
The FreesBSD Foundation would like to
acknowledge the following companies for
their continued support of the Project.
Because of generous donations such as
these we are able to continue moving the
Project forward.

Uranium

Iridium

Silver

Please check out the full list of generous community investors at
freebsdfoundation.org/donors/

Are you a fan of FreeBSD? Help us give back to the
Project and donate today! freebsdfoundation.org/donate/

TM

TM

Platinum

Gold

