
19FreeBSD Journal • September/October 2020

Why are commit messages important?
When you commit a change in Git, Subversion, or another version control system (VCS), you’re
prompted to write some text describing the commit—a commit message. How important is
this commit message? Should you spend some significant effort writing it? Does it really matter
if you write simply fixed a bug?

Most projects have more than one developer and last for some length of time. Commit
messages are a very important method of communicating with other developers in the present
and for the future.

FreeBSD has hundreds of active developers and hundreds
of thousands of commits spanning decades of history. Over
that time the developer community has learned how valu-
able good commit messages are; sometimes these are hard-
learned lessons.

Commit messages serve at least three purposes:

• Communicating with other developers
FreeBSD commits generate email to various mailing lists.
These include the commit message along with a copy
of the patch itself. Commit messages are also viewed
through commands like git log. These serve to make
other developers aware of changes that are ongoing; that
other developer may want to test the change, may have
an interest in the topic and will want to review in more
detail, or may have their own projects underway that
would benefit from interaction.

• Making changes discoverable
In a large project with a long history it may be difficult to find changes of interest when
investigating an issue or change in behavior. Verbose, detailed commit messages allow
searches for changes that might be relevant. For example, git log --since 1 year
--grep USB timeout.

BY ED MASTE

1 of 4

Commit messages
are a very important
method of
communicating
with other
developers in the
present and for
the future

Writing
Good FreeBSD
Commit Messages

20FreeBSD Journal • September/October 2020

• Providing historical documentation
Commit messages serve to document changes for future developers, perhaps years or
decades later. This future developer may even be you, the original author. A change that
seems obvious today may be decidedly not so much later on.

The git blame command annotates each line of a source file with the change (hash
and subject line) that brought it in.

Having established the importance, here are elements of a good FreeBSD commit message:

• Start with a subject line
Commit messages should start with a single-line subject that briefly summarizes the
change. The subject should, by itself, allow the reader to quickly determine if the change is
of interest or not.

• Keep subject lines short
The subject line should be as short as possible while still retaining the required informa-
tion. This is to make browsing git log more efficient, and so that git log --oneline
can display the short hash and subject on a single 80-col-
umn line. A good rule of thumb is to stay below 63 char-
acters and aim for about 50 or fewer if possible.

• Prefix the subject line with a component,
if applicable
If the change relates to a specific component the subject
line may be prefixed with that component name and a
colon (:).

✓ foo: Add -k option to keep temporary data
Include the prefix in the 63-character limit suggested

above so that git log --oneline avoids wrapping.

• Capitalize the first letter of the subject
Capitalize the first letter of the subject itself. The prefix, if
any, is not capitalized unless necessary (e.g., USB:).

• Do not end the subject line with punctuation
Do not end with a period or other punctuation. In this re-
gard the subject line is like a newspaper headline, or the
subject header in an email message.

• Separate the subject and body with a blank line
Separate the body from the subject with a blank line.

Some trivial commits do not require a body and will
have only a subject.

✓ ls: Fix typo in usage text

• Limit messages to 72 columns
git log and git format-patch indent the commit message by four spaces. Wrapping
at 72 columns provides a matching margin on the right edge. Limiting messages to 72
characters also keeps the commit message in formatted patches below RFC 2822’s sug-

2 of 4

Commit messages
are a very important
method of
communicating
with other
developers in the
present and for
the future

21FreeBSD Journal • September/October 2020

gested email line length limit of 78 characters. This limit works well with a variety of
tools that may render commit messages; line wrapping might be inconsistent with lon-
ger line length.

• Use the present tense, imperative mood
This facilitates short subject lines and provides consistency, including with automatically
generated commit messages (e.g., as generated by git revert). This is important when
reading a list of commit subjects. Think of the subject as finishing the sentence “when ap-
plied, this change will …”.

✓ foo: Implement the -k (keep) option
✗ foo: Implemented the -k option
✗ This change implements the -k option in foo
✗ -k option added

• Focus on what and why, not how
Explain what the change accomplishes and why it is being
done, rather than how.

Do not assume that the reader is familiar with the is-
sue. Explain the background and motivation for the
change. Include benchmark data if you have it.

If there are limitations or incomplete aspects of the
change, describe them in the commit message.

• Consider whether parts of the commit message
could be code comments instead
Sometimes while writing a commit message you may find
yourself writing a sentence or two explaining some tricky
or confusing aspect of the change. When this happens
consider whether it would be valuable to have that expla-
nation as a comment in the code itself.

• Write commit messages for your future self
While writing the commit message for a change you have
all of the context in mind—what prompted the change,
alternate approaches that were considered and rejected,
limitations of the change, and so on. Imagine yourself re-
visiting the change a year or two in the future and write
the commit message in a way that would provide that
necessary context.

• Commit messages should stand alone
You may include references to mailing list postings, benchmark result web sites, or code
review links. However, the commit message should contain all of the relevant information
in case these references are no longer available in the future.

Similarly, a commit may refer to a previous commit, for example in the case of a bug
fix or revert. In addition to the commit identifier (revision or hash), include the subject line
from the referenced commit (or another suitable brief reference). With each VCS migration

3 of 4

Do not assume
that the reader is
familiar with the
issue. Explain the
background and
motivation for the
change. Include
benchmark data
if you have it.

22FreeBSD Journal • September/October 2020

(from CVS to Subversion to Git) revision identifiers from previous systems may become dif-
ficult to follow.

• Include appropriate metadata in a footer
Commit messages may have one or more of a number of standard metadata tags in the
final paragraph. Standard tags used in FreeBSD are:

Tag Description

PR FreeBSD problem report (Bugzilla) number

Submitted by ID the original author, if not the committer

Reported by ID of a third party who reported the issue

Reviewed by Reviewer ID

Tested by ID of those who have tested the change

Approved by Mentor or code owner who approved the change

Obtained from Source of a change in another project

MFC after Time period before merging the change from Current
to Stable

MFC with Associated commit that this change should be merged
along with

MFH Ports quarterly branch for merge request

Relnotes Yes/No whether this change should be included in
release notes

Security External reference for a security issue, such as a CVE
number

Sponsored by Organization or event that sponsored work on
the change

Differential
Revision

Full URL of code review in FreeBSD’s Phabricator
instance

“ID” indicates either a FreeBSD userid or a name and email address. Multiple IDs may
be presented as a comma-separated list or by repeating metadata tags on subsequent
lines.

ED MASTE manages project development for the FreeBSD Foundation. He is also a member of
the elected FreeBSD Core Team. Aside from FreeBSD, he has contributed to a number of oth-
er open-source projects, including LLVM, ELF Tool Chain, QEMU, and Open vSwitch. He lives in
Kitchener-Waterloo, Canada, with his wife, Anna, and sons, Pieter and Daniel.

4 of 4

