
 <+41>:
 lock cmp

xchg %ecx,
0x54(%rbx)

 <+46>:
 setne %

r15b

 <+50>:
 sete %

sil

 <+54>:
 xor %

edi,%edi

 <+56>:
 callq 0

xffffffff8
1167ea0 <_

_sanitizer
_cov_trace

_const_cmp
1>

 <+61>:
 test %

r15b,%r15b

 <+64>:
 jne 0

xffffffff8
15b78f9 <v

m_page_rem
ove+73>

 <+66>:
 callq 0

xffffffff8
1167dc0 <_

_sanitizer
_cov_trace

_pc>

 <+71>:
 jmp 0

xffffffff8
15b790d <v

m_page_rem
ove+93>

 <+73>:
 callq 0

xffffffff8
1167dc0 <_

_sanitizer
_cov_trace

_pc>

 <+78>:
 movl $

0x1,0x54(%
rbx)

 <+85>:
 mov %

rbx,%rdi

 <+88>:
 callq 0

xffffffff8
1107950 <w

akeup>

 <+93>:
 mov %

r14d,%eax

 <+96>:
 add $

0x8,%rsp

 <+100>:
 pop %

rbx

 <+101>:
 pop %

r14

16FreeBSD Journal • November/December 2020

If you have ever been unlucky enough to fall victim to a FreeBSD kernel panic, you would be
well-justified in asking just how those sloppy kernel programmers test their code. The kernel is
the backbone of the entire system and changes to it should of course have been meticulously
tested before users can boot up the latest and greatest build. In our defense, however, kernel
programmers work in a harsh, inhospitable environment. The FreeBSD kernel is written in C,
a programming language infamous for its subtle pitfalls and lack of amenities. The kernel also
has to deal with several adversaries: first, it executes and provides services to all sorts of soft-
ware, some of which may have malicious goals; second, it interacts with the computer’s hard-
ware and all of its associated warts, convoluted designs and outright bugs. Many kernel devel-
opers have spent sleepless nights debugging memory corruption that ultimately was the result
of buggy device firmware that overwrites system memory when prodded a certain way. Finally,
like any modern OS kernel, FreeBSD’s makes use of all of the CPUs available in the computer,
and kernel developers have to grapple with all of the intrinsic complexity of writing efficient,
scalable and correct software for multi-core systems. In short, it’s a tricky problem.

FreeBSD’s developers put a great deal of effort into shipping stable, well-tested releases. It
is worth thinking for a while about how one might test, say, a change to an existing system
call, or a new system call. System calls are in a sense the front-end of the kernel: they provide
the low-level abstractions used by all programs, and the invocation of a single system call may
cause the kernel to execute thousands of lines of code on the invoker’s behalf. A developer
adding a new system call will certainly write some test programs to verify that it behaves ac-
cording to its specification, but generally it is not possible to exhaustively test all possible inputs
to a lone system call. Furthermore, test programs cannot prove the absence of a bug; even if
the system call produced a correct result, a bug may have corrupted a piece of kernel memory
in a way that is not detectable for a long time after the fact. System calls may also interact with
each other: a multi-threaded program will often execute multiple system calls simultaneous-
ly, each updating some kernel state, so our hypothetical kernel developer must think carefully
about the synchronization of these calls and how the hundreds of existing system calls might
interact with the one in question.

These kinds of problems are not specific to kernel programming and we have many concep-
tual and technological tools that let us attack the stark complexity of writing bug-free kernel
code, and deliver stable FreeBSD releases with confidence. Over the past several years a new
such tool, syzkaller, has been extraordinarily successful at finding severe bugs in all major oper-
ating systems, including FreeBSD.

BY MARK JOHNSTON

1 of 12

Kernel Fuzzing
with syzkaller

17FreeBSD Journal • November/December 2020

Coverage-guided Fuzzing
One important testing method for software that accepts untrusted input is fuzzing. Roughly

speaking, fuzzing is the technique of programmatically generating inputs for the software un-
der test, feeding that input to the software, and monitoring for unexpected results or side ef-
fects. This is an effective technique for finding bugs in the code that handles input validation,
and has become an indispensable software testing tool. For instance your PDF reader, which
you presumably use to open files found on the world wide web, will hopefully have been test-
ed using a fuzzer among other things: the PDF specification is rather complicated and the code
which parses it will be correspondingly so, making PDFs an attractive vector for malware au-
thors. Indeed, fuzzers are often used by security researchers and malware authors to find secu-
rity holes.

Fuzzing is one technique of many used to test software. One of its significant limitations is
that it cannot generally verify that software is behaving correctly, only that it is not misbehaving
according to some set of criteria. For instance, a fuzzer for a language parser would try to find
input that causes the parser to crash, but the absence of a crash for a given input does not im-
ply that the input was handled correctly according to the parser’s specification. Fuzzers instead
excel at finding corner cases and rarely executed code paths overlooked by other software test-
ing methods and which are therefore quite likely to contain bugs. To maximize effectiveness,
the software under test should use assertions and other forms of runtime checking to detect
invalid states as early as possible.

Fuzzers vary in their level of sophistication. A naive fuzzer might generate purely random
data and feed it directly to the software under test. While this approach may yield some fruit, it
is unlikely to find anything other than very basic input validation bugs while consuming a large
amount of computing resources. Consider a compiler fuzzer which simply generates random
ASCII strings: most such strings are not valid programs and so will be rejected very quickly by
the compiler’s parser, and as a result many components of the compiler, such as optimization
and code generation logic, will not be exercised. Intelligent fuzzers have some knowledge of
the input format so that they can generate valid-looking inputs that pass basic verification log-
ic. For instance, a fuzzer which aims to test an IPv6 packet processor would ensure that inputs
at least start with the 4-bit version number that begins all valid IPv6 packet headers. It could
achieve this by using a corpus of valid IPv6 packets as a starting point, or with some built-in
knowledge of the IPv6 packet header layout, or likely some combination of the two.

A second effective optimization involves providing feedback to the fuzzer. A naive fuzzer
would, in a loop, generate an input, feed it to the software under test, and wait for either a
crash or graceful termination of the program. It has no general way to determine whether a
given input helped improve test coverage of the software or not, and so cannot focus on “in-
teresting” inputs. Consider a fuzzer target which performs input validation in two stages:

Input
Fuzzer Stage 1

verifier
Stage 2
verifier

Stage 1 might simply verify that various components of the input have the correct length,
while stage 2 verifies that the individual components contain valid values. If most input fails
stage 1 validation, then stage 2 validation is left largely untested. However, if the fuzzer can

2 of 12

18FreeBSD Journal • November/December 2020

dynamically learn which inputs pass stage 1 validation, it can improve its coverage of stage 2
validation by prioritizing inputs known to pass stage 1.

There are multiple ways for a fuzzer to obtain feedback. For instance, it might measure the
amount of time taken to process a given input and use a heuristic which discards inputs that
are processed very quickly, under the assumption that such inputs are failing basic validity tests.
Another technique, used by state-of-the-art fuzzing frameworks such as libFuzzer, AFL and
syzkaller, measures code coverage. By leveraging software instrumentation facilities, a cover-
age-guided fuzzer can “trace” the code paths executed when processing a given input, and
use that information to try and generate inputs which uncover previously unexecuted code.
Fuzzers use this technique to achieve high levels of test coverage very efficiently, and indeed,
the aforementioned fuzzers have been used to find thousands of severe bugs in all sorts of
software projects, even those considered mature and well-tested.

syzkaller
Operating system kernels handle input from a variety of untrusted sources: unprivileged pro-

cesses will invoke system calls and may be trying to take control over the computer; a system
connected to the internet processes network packets from untrusted sources; the kernel may
be asked to mount a file system with invalid contents; a computer may support pluggable pe-
ripheral devices which can communicate directly with the kernel. In short, a useful kernel pres-
ents a massive attack surface, and years of high-profile kernel security holes show that there is
much room for improvement among popular operatings systems. yzkaller seeks to improve this
state of affairs.

syzkaller is an open-source coverage-guided kernel fuzzer by Dmitry Vyukov. It originally tar-
geted Linux but has since expanded to support nearly a dozen other operating systems. syz-
kaller is sometimes described as a system call fuzzer but is flexible enough to target other oper-
ating system interfaces; for example, it has been used to fuzz Linux’s USB stack and has found
dozens of bugs in the USB subsystem alone. The details are complicated but the idea is simple:
generate a program which invokes one or more system calls (or injects a packet into the net-
work, etc.), run it, and check to see if the system diagnosed an error (for example by panick-
ing). If not, collect kernel code coverage information and decide whether to try iterating upon
the previous test program, or start anew. If so, collect information about the crash and try to
discover a minimal test case that triggers the crash.

syzkaller is written mostly in Go and consists of a dozen or so loosely-coupled programs, all
prefixed with syz-, that together provide a self-contained system to do all of the following:

• Start and run a set of operating system instances, typically in virtual machines.
• Monitor those virtual machines for crashes or other diagnostic reports, typically by monitor-

ing console output.
• Generate programs to run under the target operating system, using coverage information

to drive decisions about what to try next, and run them.
• Maintain a database of observed crashes and diagnostic reports, to try and classify distinct

bugs found.
• Provide a web dashboard displaying statistics, code coverage information, and observed

crashes and their reproducers if any.
• Periodically update itself and the operating system under test without any manual interven-

tion.
• Attempt to bisect new crashes down to the commit introducing the bug.

3 of 12

19FreeBSD Journal • November/December 2020

The high-level components of this system as it might run on FreeBSD are depicted here:

syz-manager

syz-ci

syz-fuzzer

netdumpd

syz-executor
/dev/kcov

buildkernel

gmake

syz-prog2c

VMs
SSH, SCP

bhyve,
ZFS

corpus,
crash reports

:80

.c files

vmcoressyscalls

Thanks to Google, the syzkaller developers provide numerous public syzkaller instances run-
ning in continuous integration mode, wherein syzkaller updates itself and the target operating
system regularly. These “syzbot” instances find bugs in the latest builds of their targets, so re-
gressions are reported quickly and completely automatically. The FreeBSD instances have found
numerous bugs and reproducers, enabling developers to both diagnose and fix bugs quickly
and to provide higher-quality releases.

kcov(4)
syzkaller is not the first kernel fuzzer but is undoubtedly the most prominent. Newsgroup

posts from the early 1990s describe programs which bombard UNIX kernels with random sys-
tem calls to great effect. Peter Holm’s stress2 test suite for FreeBSD performs some target-
ed fuzzing of certain system calls (among many other things). However, syzkaller introduces a
key innovation in its use of code coverage to drive test case generation. This makes use of the
kcov(4) kernel subsystem, written also by Dmitry Vyukov for Linux but later ported to other
operating systems by their respective developers. While syzkaller does not strictly require code
coverage information, it is much more effective with this extra feedback from the kernel.

In FreeBSD, kcov(4) is a wrapper for LLVM’s SanitizerCoverage. Sanitizers are compiler fea-
tures which inject bits of code enabling certain types of introspection into the compiled result.
For example, LLVM’s AddressSanitizer inserts special function calls before every single memory
access by the generated machine code; the calls can be used to determine whether the memory
access is somehow invalid, for example because it corresponds to a use-after-free. This provides
powerful bug-detection facilities similar to Valgrind but using different mechanisms: Valgrind
works by running the unmodified target program in a software virtual machine which can inter-
cept memory accesses and perform validation, whereas sanitizers are implemented by the com-
piler itself and require special compilation flags. Sanitizers and Valgrind both introduce significant
performance overhead and are generally used only in testing scenarios. Sanitizers have the add-
ed benefit that they can sometimes be used to validate a kernel, while Valgrind cannot.

SanitizerCoverage inserts function calls according to the control flow of the generated code.
Most CPU instructions do not modify control flow: once the instruction is completed, the CPU
fetches and executes the subsequent instruction from RAM. Control flow instructions cause

4 of 12

20FreeBSD Journal • November/December 2020

the CPU to jump to a different address and begin execution there instead. This is how basic
programming language constructs like if-statements, loops and goto work under the hood. A
compiled program can thus be broken down into a set of “basic blocks,” where a basic block
is a sequence of non-control flow instructions. Following the end of each basic block is a con-
trol flow instruction. Then, if the goal is to figure out which pieces of code get executed in re-
sponse to a given input, it suffices to trace out which basic blocks get executed.

SanitizerCoverage, roughly speaking, inserts function calls in between each basic block, as in
this machine code for the FreeBSD kernel function vm_page_remove():

 <+0>: push %rbp
 <+1>: mov %rsp,%rbp
 <+4>: push %r15
 <+6>: push %r14
 <+8>: push %rbx
 <+9>: push %rax
 <+10>: mov %rdi,%rbx
 <+13>: callq 0xffffffff81167dc0 <__sanitizer_cov_trace_pc>
 <+18>: mov %rbx,%rdi
 <+21>: callq 0xffffffff815b7c50 <vm_page_remove_xbusy>
 <+26>: mov %eax,%r14d
 <+29>: mov $0x1,%ecx
 <+34>: xor %esi,%esi
 <+36>: mov $0x2,%eax
 <+41>: lock cmpxchg %ecx,0x54(%rbx)
 <+46>: setne %r15b
 <+50>: sete %sil
 <+54>: xor %edi,%edi
 <+56>: callq 0xffffffff81167ea0 <__sanitizer_cov_trace_const_cmp1>
 <+61>: test %r15b,%r15b
 <+64>: jne 0xffffffff815b78f9 <vm_page_remove+73>
 <+66>: callq 0xffffffff81167dc0 <__sanitizer_cov_trace_pc>
 <+71>: jmp 0xffffffff815b790d <vm_page_remove+93>
 <+73>: callq 0xffffffff81167dc0 <__sanitizer_cov_trace_pc>
 <+78>: movl $0x1,0x54(%rbx)
 <+85>: mov %rbx,%rdi
 <+88>: callq 0xffffffff81107950 <wakeup>
 <+93>: mov %r14d,%eax
 <+96>: add $0x8,%rsp
 <+100>: pop %rbx
 <+101>: pop %r14
 <+103>: pop %r15
 <+105>: pop %rbp
 <+106>: retq

Here the __sanitizer_cov_trace_* function calls are inserted by SanitizerCoverage and
can be implemented by the kernel. kcov(4) works by implementing these functions.

5 of 12

21FreeBSD Journal • November/December 2020

In typical usage, a user program allocates a buffer to store coverageinformation, opens /
dev/kcov and uses ioctl(2) to map the buffer into the kernel and to enable tracing of the
current thread. When the thread subsequently enters the kernel, perhaps to execute a system
call, the coverage tracing hooks log the address of each basic block into the buffer. When the
thread disables tracing, again using an ioctl(2) call, it can make use of the information provid-
ed in the buffer. For instance, the recorded addresses could be piped into the addr2line(1)
program to find the file and line number of the traced C code. The kcov(4) manual page con-
tains the details of this ioctl(2) interface as well as some example code.

syzlang
Earlier we pointed out that fuzzers work better when they have some knowledge of the

software’s input format, rather than treating it as a black box. While syzkaller could theoretically
invoke system calls without any knowledge of what they do or what parameters they take —
using only coverage information to try and “learn” which parameter values result in more code
execution — this is both inefficient and potentially counter-productive. Consider what happens
if a fuzzer invokes kill(-1, SIGKILL): the kernel will do what it was asked to do and immedi-
ately kill the fuzzer process.

Unfortunately, system call interfaces cannot be discovered programmatically. In other words,
there is generally no way to ask the kernel to describe the set of system calls that it implements.
Even a set of C function prototypes omits many important details. Consider read(2):

 read(int fd, void *buf, size_t nbytes);

First, fd is here represented by an integer, but really must be a valid file descriptor as well.
There are 4,294,967,295 possible values for fd and all but a tiny fraction of them are invalid.
Second, it is not clear what the kernel is expected to do with buf: is the kernel supposed to
read data from that address, or write to it, or both, or neither? Third, nbytes is supposed to
represent the size of the buffer buf but the prototype gives no indication that these two pa-
rameters are related; the C language is simply not expressive enough to do so. If you are famil-
iar with ioctl(2), think for a bit about how it makes a bad situation even worse.

To solve these problems, syzkaller introduces syzlang: a language for modeling the kernel’s
programming interfaces. It is flexible enough to define data layouts that are binary-compati-
ble with C types, and expressive enough to describe inter-related C parameters, among other
things. In syzlang, the read(2) prototype above becomes:

 read(fd fd, buf buffer[out], count len[buf])

Unlike C (but like Go), the parameter name comes first, followed by the type. Right away we
can see that this definition provides more information than the C prototype: there is an fd type,
to distinguish file descriptors from plain integers; buf is a pointer to a buffer mapped in the call-
er’s address space, and the [out] annotation signifies that it is an “out-parameter,” i.e., the ker-
nel is supposed to write data to the buffer; count is the length, in bytes, of the buffer buf.

The use of specialized types to represent file descriptors and other kernel resources is import-
ant for generating programs that do “interesting” things since many system calls take as input
the results of previous system calls. For example, to read data from a file a program might exe-
cute the following sequence of system calls:

6 of 12

22FreeBSD Journal • November/December 2020

 const size_t len = 4096;
 void *buf = mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_ANON, -1, 0);
 int fd = open(“/tmp/foo”, O_RDWR);
 read(fd, buf, len);
 close(fd);
 munmap(buf, len);

Note that the results of the mmap(2) and open(2) calls are used as input to subsequent
calls. Fuzzing munmap(2) and close(2) does not make much sense without earlier calls to
mmap(2) and open(2), so syzlang models the corresponding resources and syzkaller creates
chains of system calls using these relationships to guide its choices.

The use of mmap(2) also illustrates a need to define the set of valid values for “flag” param-
eters such as the third and fourth arguments. syzlang has a built-in flags type for this:

 mmap(addr vma, len len[addr], prot flags[mma_prot],
 flags flags[mmap_flags], fd fd, offset fileoff)

 mmap_prot = PROT_EXEC, PROT_READ, PROT_WRITE
 mmap_flags = MAP_SHARED, MAP_PRIVATE, MAP_ANON, ...

The fuzzer will chose zero or more flag values when creating an argument for a flag pa-
rameter.

syzlang can also use subtyping to more accurately model system call interfaces. Network
connections and open files are both represented by file descriptors in the system call interface,
but many system calls accept only certain types of file descriptors. For instance, one of
sendfile(2)’s parameters is a file descriptor corresponding to a network connection on which
to send a file’s data. Such descriptors are created using socket(2) or socketpair(2). Passing
a descriptor for a regular file here will fail, so to save the fuzzer time we can define a new sock-
et type. First we have the definition for fd:

 resource fd[int32]: 0xffffffffffffffff, AT_FDCWD

This derives fd from the built-in integer type int32 and defines a couple of special values:
-1, for system calls where a parameter of type fd is optional (such as mmap(2)), and AT_FDCWD,
used by openat(2) and similar system calls. Then we can define a derived resource type for
sockets:

 resource sock[fd]

 socket(...) sock
 sendfile(fd fd, s sock, ...)

A similar trick is used for system calls where layout of a parameter depends on the value of
another parameter. ioctl(2) is the prime example of this, but fcntl(2), setsockopt(2) and
bind(2) behave similarly. For example, pf(4) defines a large set of ioctl commands, but each
has its own argument type. We can describe them precisely in syzlang:

7 of 12

23FreeBSD Journal • November/December 2020

resource fd_pf[fd]
openat$pf(fd const[AT_FDCWD], file ptr[in, string[“/dev/pf”]], ...) fd_pf
ioctl$DIOCRADDTABLES(fd fd_pf, cmd const[DIOCRADDTABLES], arg ptr[in, pfioc_table])

Here we define a new fd type which corresponds to a file descriptor for /dev/pf. Then, spe-
cial “flavours” of openat(2) and ioctl(2) describe how the fuzzer can open a pf(4) device
and issue the DIOCRADDTABLES ioctl, used by pfctl(8) to define an address table.

syzlang definitions are compiled at build-time into tables used by syzkaller’s fuzzer. syzkaller
maintains its own internal representation of system calls and their parameters, and its repre-
sentation of a program is simply a list of calls and parameters. All fuzzing is performed using
these representations; when a reproducer for a kernel bug is found, it is finally translated into a
standalone C program. This can be done manually using syz-prog2c but this is typically han-
dled automatically.

New system call definitions are added frequently since in most cases syzkaller is still playing
catch-up: the existing kernel interfaces are massive and defining them in syzlang requires time
and effort. In particular, many components of FreeBSD are not yet described by syzlang and
therefore do not get tested by syzbot. Adding to the FreeBSD syzlang definitions is a great way
to start contributing to the syzkaller project and to help ensure that FreeBSD gets as much test
coverage as possible.

syz-manager
So far we have looked at the mechanisms by which syzkaller addresses the generic technical

problems faced by all fuzzers: obtaining feedback from the target software (via kcov(4)) and
describing kernel interfaces (with syzlang). Now we can look more at some of the machinery
required to fuzz an operating system kernel.

A fuzzer’s goal is to “exercise” the code being tested, so it needs an environment in which
to execute the code and provide input. Fuzzing a kernel poses some extra challenges: the fuzz-
er needs to run in the same system as the kernel being tested, so if it achieves its goal and trig-
gers a kernel panic, all of the fuzzer’s state will be lost. syzkaller’s solution is to run the target
kernel in a set of virtual machines which can be safely wiped without losing anything import-
ant. These VMs can run on the same host as syzkaller or in cloud environments such as Google
Compute Engine.

syz-manager is the main front-end program of syzkaller. It takes a configuration file as in-
put and starts a number of VMs according to the configuration. It automatically installs and
starts the fuzzer programs in each VM instance and communicates with them using an RPC
interface over SSH. syz-manager also monitors the VM consoles to detect crashes. When a
crash occurs, the VM is automatically re-created. VMs are restarted periodically even in the ab-
sence of a crash; one reason for this is to enable “corpus rotation.”

syz-manager also maintains the instance’s crash database. When a crash is discovered,
syz-manager adds an entry to the crash database. Crashes are identified by the panic message
printed by the kernel, and when a new crash is found, syz-manager dedicates a subset of the
VMs to spend time attempting to reproduce the crash. Programs that were executed leading
up to the crash are replayed, and if a crash can be reproduced, syzkaller also attempts to find
a minimal reproducible for the crash to add to the crash database. Finally, syzkaller attempts to
translate the crashing program into a standalone C program, making it easy for developers to
debug crashes without needing a syzkaller installation on hand.

8 of 12

24FreeBSD Journal • November/December 2020

Most of the work to set up syzkaller involves creating a VM image containing the target op-
erating system. The VM’s kernel should have kcov(4) enabled, and an SSH key for the root
user must be installed. The VM image is used as template; when syz-manager starts, it creates
a snapshot of the image before starting VMs, and each VM uses a local copy of the template.
When a VM is restarted, it gets a fresh copy of the template image, so any damage done by
the fuzzer is discarded.

syz-manager supports a number of different hypervisors and cloud APIs. On FreeBSD one
can use bhyve as the back-end hypervisor. To create a VM image template syz-manager uses
ZFS clones, since bhyve lacks support for creating disk image snapshots. Upon starting up
syz-manager also starts a web server, providing a dashboard containing statistics and code cov-
erage information, deduplicated crash reports, and crash reproducers. A sample syz-manager
configuration looks like this:

{
 “target”: “freebsd/amd64”,
 “http”: “0.0.0.0:8080”,
 “workdir”: “/data/syzkaller”,
 “image”: “/data/syzkaller/vm.raw”,
 “syzkaller”: “/home/markj/go/src/github.com/google/syzkaller”,
 “procs”: 4,
 “type”: “bhyve”,
 “ssh_user”: “root”,
 “sshkey”: “/data/syzkaller/id_rsa”,
 “kernel_obj”: “/usr/obj/usr/home/markj/src/freebsd/amd64.amd64/sys/SYZKALLER”,
 “kernel_src”: “/”,
 “vm”: {
 “bridge”: “bridge0”,
 “count”: 32,
 “cpu”: 2,
 “hostip”: “169.254.0.1”,
 “dataset”: “data/syzkaller”
 }
}

This configuration specifies 32 VM instances; in general, more VMs is better since each VM
runs test programs in parallel with the others. The “cpu” parameter defines the number of vir-
tual CPUs given to each VM, and the “procs” parameter defines the number of fuzzer process-
es that will run in each VM. Having multiple virtual CPUs and fuzzer processes improves the
odds of finding certain types of bugs, but over-subscribing the host may decrease the effective-
ness of fuzzing by making it hard to reproduce bugs. It is reasonable to configure one or two
virtual CPUs per host CPU, but more than that is probably too many.

See the FreeBSD/syzkaller documentation for details on how to build and configure your
own syzkaller setup. With a configuration file written, syzkaller can be started with:

 # syz-manager -config /path/to/config

When using bhyve, syzkaller needs to run as root in order to create virtual machines. It is pos-
sible to run syzkaller in a jail with some effort; some ongoing work aims to make this simpler.

9 of 12

25FreeBSD Journal • November/December 2020

If you wish to run your own private syzkaller instance, do be prepared to be patient — now
that much of the low-hanging fruit has been fixed, it can take days for syzkaller to find a new
kernel bug.

Fuzzing the Kernel
Now that we have encountered most of the machinery that syzkaller uses to fuzz operating

system kernels, we are equipped to start looking at the brains of syzkaller.
Aside from the crash database, syzkaller’s main piece of persistent state consists of the cor-

pus: a representative set of programs whose execution generates coverage of the kernel. The
corpus — initially empty — is effectively a seed for the fuzzer: a new test program is generat-
ed by taking a program from the corpus, mutating it in some small way, and checking to see if
previously uncovered kernel code was covered by the new program. If so, the program may be
added to the corpus and subsequently used as the starting point for other programs. Algorith-
mically, the fuzzer does nothing except try to increase the size of the corpus. Many heuristics
are applied to try and make this more effective for syzkaller’s real purpose — finding bugs —
but the core idea is very simple.

Several types of program mutations are possible. The fuzzer might:
• splice several programs together
• insert a new system call
• remove an existing system call
• modify one of the parameters to a call in the program
If the corpus is empty, the fuzzer will create a new program by generating a random list of

system calls with randomly selected arguments. This is also done periodically even when the
corpus is non-empty.

Inside each VM managed by syzkaller runs a pair of programs, syz-fuzzer and
syz-executor, which communicate using a shared memory interface. As their names suggest,
syz-fuzzer generates test programs and syz-executor actually executes them. syz-fuzzer
and syz-manager coordinate using a simple RPC protocol; since syz-fuzzer generates pro-
grams which may crash the VM, it relies on syz-manager to store the corpus.

syz-fuzzer is started by syz-manager over SSH. When it begins, it establishes an RPC con-
nection with syz-manager and creates a number of work queues, each of which is managed
by a thread (really, a goroutine). The worker threads each spawn a syz-executor instance and
immediately begin fuzzing, yielding the following picture:

syz-manager

syz-fuzzer

syz-executor.1 syz-executor.2syz-executor.0

kernel

shmem

VM
RPC

workerworker worker

10 of 12

26FreeBSD Journal • November/December 2020

Worker threads perform most of the work of adding to the corpus: they generate new pro-
grams and mutate existing ones. They also handle special types of work:

• Triage: when a program appears to generate new coverage it is placed in the triage queue
for further refinement. The triage step tries to determine whether the program behaves
consistently (i.e., re-runs generate the same coverage info), and if so, tries to minimize the
size of the program while maintaining its coverage.

• Smashing: when a program has been triaged and appears worthy of being added to the
corpus, the worker spends extra time mutating it to look for new coverage.

• Candidate processing: syz-manager may send candidate programs to the fuzzers in some
cases. The worker executes them, potentially creating triage or smash work.

In steady-state operation, syz-fuzzer uses two RPCs to communicate with the manager:
Poll and NewInput.

Poll is invoked periodically to update the fuzzer’s snapshot of the corpus and global cover-
age information, and to collect candidate programs for fuzzing. It also serves to re-process the
existing corpus when syzkaller starts up; a typical syzkaller installation will periodically update
itself and the target kernel, and must subsequently restart. The saved corpus is immediately dis-
tributed among the fuzzers for execution and triage since the updated kernel may handle exist-
ing corpus items differently from when they were last evaluated.

NewInput is used to send triaged programs back to syz-manager as possible candidates
for the global corpus. syz-manager will reject new inputs in some cases, for instance to avoid
blowing up the size of the corpus, or if another fuzzer had already discovered a similar pro-
gram. If accepted, new corpus programs eventually become visible to other fuzzer instances
via Poll.

Unfortunately, code coverage is not an ideal metric: 100% code coverage of a program
does not preclude the existence of detectable bugs, especially in multi-threaded code such as a
modern operating system kernel. Optimizing for an imperfect metric tends to yield suboptimal
results — we (hopefully!) do not evaluate programmers based on the number of lines of code
they have written. In syzkaller’s case, valuable test programs may be discarded if they do not
add to the corpus’ code coverage. To try and alleviate this problem, syzkaller performs corpus
“rotation”: some system calls and corpus programs are hidden from individual fuzzers to force
them to find programs with equivalent coverage but hopefully new characteristics. This can re-
sult in duplicated effort but helps to ensure that the system does not become “stuck” by find-
ing local maxima.

Program Execution
To round off our examination of syzkaller a look at syz-executor is in order. syzkaller uses

an internal representation of system call programs for the purpose of fuzzing, but of course has
to actually run them somehow. syz-executor is the component of syzkaller that performs this
task; unlike the rest of syzkaller, it is written in C++.

The executor is spawned by syz-fuzzer worker threads and uses a simple shared memo-
ry interface to communicate with the worker. It first creates a pool of threads to actually exe-
cute system calls, and then opens /dev/kcov and uses ioctl(2) to enable collection of code
coverage information that is returned to the worker. Quite a lot of additional initialization may
happen at this point, depending on how syzkaller is configured. For instance, the executor
may enter a software sandbox in an attempt to limit the effects of the test program: a pro-
gram which sends signals to unsuspecting processes is likely to wedge the VM and trigger a

11 of 12

27FreeBSD Journal • November/December 2020

costly timeout and restart. It may also initialize devices or network facilities as part of a target-
ed fuzzing regime.

When it comes time to execute system calls, syz-executor iterates over the call list and as-
signs an idle thread to each one, waiting for threads to become free if necessary. Initially, the
main thread waits for a short period after each call is dispatched. Once the input program has
finished, it is executed a second time in “collision mode”: rather than waiting for a short period
after each call is dispatched, pairs of system calls are allowed to execute concurrently, helping to
trigger race conditions in the kernel that would otherwise be left unexercised.

Actual system call execution is achieved using the handy syscall(2) system call, a generic
system call which takes a system call number and variable list of parameters as arguments. In-
ternally the kernel uses the system call number to route the call to the requested handler. The
system call’s result is also recorded for use in prioritizing and triaging programs: a successful sys-
tem call is weighted more favorably than a failed system call.

Conclusion
If you managed to get this far, please don’t stop here! syzkaller is the subject of quite few

talks, articles and even research papers — check out syzkaller’s documentation for some cu-
rated links. This article only scratches the surface of syzkaller’s internals, and the sources are as
usual the authoritative reference on how syzkaller actually works.

Fuzzing is a fascinating subject and there is a certain thrill to watching a fuzzer in action
— particularly when it finds bugs in your favorite operating system. We encourage you to
give it a try.

MARK JOHNSTON is a contractor and FreeBSD src committer based in Toronto, Canada. He is
particularly interested in kernel debugging and in finding new ways to help improve the stabili-
ty of FreeBSD. In his spare time he enjoys cooking, playing Bach’s cello suites, and impeding his
productivity by experimenting with custom keyboard layouts.

12 of 12

Thank you!
The FreesBSD Foundation would like to
acknowledge the following companies for
their continued support of the Project.
Because of generous donations such as
these we are able to continue moving the
Project forward.

Uranium

Iridium

Silver

Please check out the full list of generous community investors at
freebsdfoundation.org/donors/

Are you a fan of FreeBSD? Help us give back to the
Project and donate today! freebsdfoundation.org/donate/

TM

TM

Platinum

Gold

Koum Family Foundation

