
8FreeBSD Journal • November/December 2020

The FreeBSD project has begun its transition from Subversion to Git. This move has been over a
year in the planning and reprensets the next step in FreeBSD’s continuing efforts to improve its
workflow. The project hopes that the larger ecosystem for Git will help it improve its continu-
ous integration (CI) efforts; make it easier to submit patches; and generally increase the quality
of the project.

This article is aimed at the FreeBSD user who downloads sources, has local changes and
sometimes contributes them back to the project. It will provide an introduction to the FreeBSD’s
use of Git for an audience already generally familiar with the basics of Git. Where possible, a
pointer to a more in-depth treatment of Git will be provided. There are many primers for Git on
the web, but the Git Book provides one of the better treatments.

Keeping Current With FreeBSD src Tree
First step: cloning a tree. This downloads the entire tree. There are two ways to download.
Most people will want to do a deep clone of the repo. However, there are times that you may
wish to do a shallow clone.

Branch Names
The branch names in the new Git repo are similar to the old names. For the stable branches,

they are stable/X where X is the major release (like 11 or 12). The main branch in the new repo
is main. The main branch in the old GitHub mirror is master. Both reflect the defaults of Git
at the time they were created. The main/master branch is the default branch if you omit the
-b branch or --branch branch options below.

Repositories
At the moment, there are two repositories. The hashes are different between them. The old

GitHub repo is similar to the new cgit repo. However, there are a large number of mistakes in
the GitHub repo that required us to regenerate the export when we migrated to having a Git
repo be the source of truth for the project.

The GitHub repo is at https://github.com/freebsd/freebsd.git The new production repo is
at either https://git.freebsd.org/src.git or ssh://anonssh@git.freebsd.org/src.git depending on
which transport you wish to use. These will be $URL in the commands below.

Note: The project doesn’t use submodules as they are a poor fit for our workflows and de-
velopment model. How we track changes in third-party applications is discussed elsewhere and
generally of little concern to the casual user.

BY WARNER LOSH

1 of 8

FreeBSD
mini-Git Primer

9FreeBSD Journal • November/December 2020

Deep Clone
A deep clone pulls in the entire tree, as well as all the history and branches. It’s the easiest to

do. It also allows you to use Git’s worktree feature to have all your active branches checked out
into separate directories but with only one copy of the repository.

% git clone -o freebsd $URL -b branch [dir]

is how you make a deep clone. branch should be one of the branches listed in the previous
section. It is optional if it is the main/master branch. dir is an optional directory to place it in
(the default will be the name of the repo you are cloning (freebsd or src)).

You’ll want a deep clone if you are interested in the history, plan on making local changes,
or plan on working on more than one branch. It’s the easiest to keep up to date as well. If you
are interested in the history, but are working with only one branch and are short on space, you
can also use --single-branch to only download the one branch (though some merge com-
mits will not reference the merged-from branch which may be important for some users who
are interested in detailed versions of history).

Shallow Clone
A shallow clone copies just the most current code, but none or little of the history. This can be

useful when you need to build a specific revision of FreeBSD, or when you are just starting out
and plan to track the tree more fully. You can also use it to limit history to only so many revisions.

% git clone -o freebsd -b branch --depth 1 $URL [dir]

This clones the repository, but only has the most recent version in the repository. The rest
of the history is not downloaded. Should you change your mind later, you can do git fetch
--unshallow to get the old history.

Building
Once you’ve downloaded, building is done as described in the handbook, eg:

% cd src
% make buildworld
% make buildkernel
% make installkernel
% make installworld

so that won’t be covered in depth here.

Updating
To update both types of trees uses the same commands. This pulls in all the revisions since

your last update.

% git pull --ff-only

will update the tree. In Git, a fast forward merge is one that only needs to set a new branch
pointer and doesn’t need to re-create the commits. By always doing a fast forward merge/

2 of 8

10FreeBSD Journal • November/December 2020

pull, you’ll ensure that you have an identical copy of the FreeBSD tree. This will be important if
you want to maintain local patches.

See below for how to manage local changes. The simplest is to use --autostash on the
git pull command, but more sophisticated options are available.

Selecting a Specific Version
In Git, the git checkout checks out both branches and specific versions. Git’s versions are the
long hashes rather than a sequential number.

When you checkout a specific version, just specify the hash you want on the command line
(the Git Log command can help you decide which hash you might want):

% git checkout 08b8197a74

and you have that checked out. You’ll be greeted with a message similar to the following:

Note: checking out ‘08b8197a742a96964d2924391bf9fdfeb788865d’.

You are in ‘detached HEAD’ state. You can look around, make experimental chang-
es and commit them, and you can discard any commits you make in this state without
impacting any branches by performing another checkout.

If you want to create a new branch to retain commits you create, you may do so
(now or later) by using -b with the checkout command again. Example:

git checkout -b

HEAD is now at 08b8197a742a hook gpiokeys.4 to the build

where the last line is generated from the hash you are checking out and the first line of the
commit message from that revision. The hash can be abbreviated to the shortest unique length.
Git itself is inconsistent about how many digits it displays.

Bisecting
Sometimes, things go wrong. The last version worked, but the one you just updated to does

not. A developer may ask to bisect the problem to track down which commit caused the re-
gression.

If you’ve read the last section, you may be thinking to yourself “How the heck do I bisect
with crazy version numbers like that?” then this section is for you. It’s also for you if you didn’t
think that, but also want to bisect.

Fortunately, one uses the git bisect command. Here’s a brief outline of how to use it. For
more information, I’d suggest https://www.metaltoad.com/blog/beginners-guide-git-bisect-pro-
cess-elimination or https://git-scm.com/docs/git-bisect for more details. The man page is good
at describing what can go wrong, what to do when versions won’t build, when you want to
use terms other than good and bad, etc., none of which will be covered here.

git bisect start will start the bisection process. Next, you need to tell a range to go
through. git bisect good XXXXXX will tell it the working version and git bisect bad

3 of 8

11FreeBSD Journal • November/December 2020

XXXXX will tell it the bad version. The bad version will almost always be HEAD (a special tag for
what you have checked out). The good version will be the last one you checked out.

A quick aside: if you want to know the last version you checked out, you should use git
reflog:

5ef0bd68b515 (HEAD -> master, freebsd/master, freebsd/HEAD) HEAD@{0}:
pull --ff-only: Fast-forward
a8163e165c5b (upstream/master) HEAD@{1}: checkout: moving from b6fb97efb682994f59b-
21fe4efb3fcfc0e5b9eeb to master

shows me moving the working tree to the master branch (a816...) and then updating from
upstream (to 5ef0...). In this case, bad would be HEAD (or 5rf0bd68) and good would be
a8163e165. As you can see from the output, HEAD@{1} also often works, but isn’t foolproof
if you’ve done other things to your git tree after updating, but before you discover the need
to bisect.

Back to git bisect. Set the good version first, then set the bad (though the order doesn’t
matter). When you set the bad version, it will give you some statistics on the process:

% git bisect start
% git bisect good a8163e165c5b
% git bisect bad HEAD
Bisecting: 1722 revisions left to test after this (roughly 11 steps)
[c427b3158fd8225f6afc09e7e6f62326f9e4de7e] Fixup r361997 by balancing parens. Duh.

You’d then build/install that version. If it’s good you’d type git bisect good otherwise
git bisect bad. You’ll get a similar message to the above each step. When you are done,
report the bad version to the developer (or fix the bug yourself and send a patch). git bisect
reset will end the process and return you back to where you started (usually tip of main).
Again, the git-bisect manual (linked above) is a good resource for when things go wrong or for
unusual cases.

Ports Considerations
The ports tree operates the same way. The branch names are different and the repos are in dif-
ferent locations.

The GitHub mirror is at https://github.com/freebsd/freebsd-ports.git. The cgit mirror is
https://cgit-beta.freebsd.org/ports.git for now. The production Git repo will be https://git.
freebsd.org/ports.git or ssh://anonsshgit.freebsd.org/ports.git when the time comes. The plan is
to switch the ports repository from Subversion to Git at the end of Q1 2021.

As with ports, the current branches are master and main respectively. The quarterly
branches are named the same as in FreeBSD’s svn repo. Due to bugs in the converter, there will
likely be a hash respin when the ports svn repo migrates to git, just like the src and doc repos.

Coping with Local Changes
This section addresses tracking local changes. If you have no local changes, you can stop read-
ing now (it’s the last section and OK to skip).

4 of 8

12FreeBSD Journal • November/December 2020

One item that’s important for all of them: all changes are local until pushed. Unlike svn, Git
uses a distributed model. For users, for most things, there’s very little difference. However, if you
have local changes, you can use the same tool to manage them as you use to pull in changes
from FreeBSD. All changes that you’ve not pushed are local and can easily be modified (git re-
base, discussed below, does this).

Keeping Local Changes
The simplest way to keep local changes (especially trivial ones) is to use git stash. In its

simples form, you use git stash to record the changes (which pushes them onto the stash
stack). Most people use this to save changes before updating the tree as described above. They
then use git stash apply to re-apply them to the tree. The stash is a stack of changes that
can be examined with git stash list. The git-stash man page (https://git-scm.com/docs/git-
stash) has all the details.

This method is suitable when you have tiny tweaks to the tree. When you have anything
non trivial, you’ll likely be better off keeping a local branch and rebasing. Stashing is also inte-
grated with the Git pull command: just add --autostash to the command line.

Keeping a Local Branch
It’s much easier to keep a local branch with Git than Subversion. In Subversion you need to

merge the commit, and resolve the conflicts. This is manageable, but can lead to a convoluted
history that’s hard to upstream should that ever be necessary, or hard to replicate if you need
to do so. Git also allows one to merge, along with the same problems. That’s one way to man-
age the branch, but it’s the least flexible.

In addition to merging, Git supports the concept of rebasing which avoids these issues.
The git rebase command replays all the commits of a branch at a newer location on the par-
ent branch. We’ll cover the most common scenarios that arise using it.

Create a Branch
Let’s say you want to make a hack to FreeBSD’s ls command to never, ever do color. There

are many reasons to do this, but this example will use that as a baseline. The FreeBSD ls com-
mand changes from time to time, and you’ll need to cope with those changes. Fortunately,
with git rebase it usually is automatic.

% cd src
% git checkout main
% git checkout -b no-color-ls
% cd bin/ls
% vi ls.c # hack the changes in
% git diff # check the changes
diff --git a/bin/ls/ls.c b/bin/ls/ls.c
index 7378268867ef..cfc3f4342531 100644
--- a/bin/ls/ls.c
+++ b/bin/ls/ls.c
@@ -66,6 +66,7 @@ __FBSDID(“$FreeBSD$”);
 #include <stdlib.h>
 #include <string.h>
 #include <unistd.h>

5 of 8

13FreeBSD Journal • November/December 2020

+#undef COLORLS
 #ifdef COLORLS
 #include <termcap.h>
 #include <signal.h>
% # these look good, make the commit...
% git commit ls.c

The commit will pop you into an editor to describe what you’ve done. Once you enter that,
you have your own local branch in the Git repo. Build and install it like you normally would, fol-
lowing the directions in the handbook. Git differs from other version control systems in that
you have to tell it explicitly which files to use. I’ve opted to do it on the commit command line,
but you can also do it with git add which many of the more in depth tutorials cover.

Time to Update
When it’s time to bring in a new version, it’s almost the same as w/o the branches. You

would update like you would above, but there’s one extra command before you update, and
one after. The following assumes you are starting with an unmodified tree. It’s important to
start rebasing operations with a clean tree (Git usually requires this).

% git checkout main
% git pull --no-ff
% git rebase -i main no-color-ls

This will bring up an editor that lists all the commits in it. For this example, don’t change it at
all. This is typically what you are doing while updating the baseline (though you also use the git
rebase command to curate the commits you have in the branch).

Once you’re done with the above, you’ve move the commits to ls.c forward from the old
version of FreeBSD to the newer one.

Sometimes there’s merge conflicts. That’s OK. Don’t panic. You’d handle them the same as
you would any other merge conflicts. To keep it simple, I’ll just describe a common issue you
might see. A pointer to a more complete treatment can be found at the end of this section.

Let’s say the merge includes changes upstream in a radical shift to terminfo as well as a
name change for the option. When you updated, you might see something like this:

Auto-merging bin/ls/ls.c
CONFLICT (content): Merge conflict in bin/ls/ls.c
error: could not apply 646e0f9cda11... no color ls
Resolve all conflicts manually, mark them as resolved with
“git add/rm <conflicted_files>”, then run “git rebase --continue”.
You can instead skip this commit: run “git rebase --skip”.
To abort and get back to the state before “git rebase”, run “git rebase --abort”.
Could not apply 646e0f9cda11... no color ls

which looks scary. If you bring up an editor, you’ll see it’s a typical 3-way merge conflict reso-
lution that you may be familiar with from other source code systems (the rest of ls.c has been
omitted):

6 of 8

14FreeBSD Journal • November/December 2020

<<<<<<< HEAD
#ifdef COLORLS_NEW
#include <terminfo.h>
=======
#undef COLORLS
#ifdef COLORLS
#include <termcap.h>
>>>>>>> 646e0f9cda11... no color ls

The new code is first, and your code is second. The right fix here is to just add a #undef
COLORLS_NEW before #ifdef and then delete the old changes:

#undef COLORLS_NEW
#ifdef COLORLS_NEW
#include <terminfo.h>

save the file. The rebase was interrupted, so you have to complete it:

% git add ls.c
% git rebase --continue

which tells Git that ls.c has changed and to continue the rebase operation. Since there was
a conflict, you’ll get kicked into the editor to update the commit message if necessary. If the
commit message is still accurate, just exit the editor.

If you get stuck during the rebase, don’t panic. git rebase --abort will take you back to
a clean slate. It’s important, though, to start with an unmodified tree.

For more on this topic, https://www.freecodecamp.org/news/the-ultimate-guide-to-git-
merge-and-git-rebase/ provides a rather extensive treatment. It is a good resource for issues
that arrise occasionally but are too obscure for this guide.

Switching to a Different FreeBSD Branch
If you wish to shift from stable/12 to the current branch and if you have a deep clone, the

following will suffice:

% git checkout main
% # build and install here...

If you have a local branch, though, there are one or two caveats. First, rebase will rewrite
history, so you’ll likely want to do something to save it. Second, jumping branches tends to
encounter more conflicts. If we pretend the example above was relative to stable/12, then to
move to main, I’d suggest the following:

% git checkout no-color-ls
% git checkout -b no-color-ls-stable-12 # create another name for this branch
% git rebase -i stable/12 no-color-ls --onto main

7 of 8

15FreeBSD Journal • November/December 2020

What the above does is checkout no-color-ls. Then create a new name for it (no-col-
or-ls-stable-12) in case you need to get back to it. Then you rebase onto the main branch.
This will find all the commits to the current no-color-ls branch (back to where it meets up with
the stable/12 branch) and then it will replay them onto the main branch creating a new no-
color-ls branch there (which is why I had you create a place holder name).

Migrating from an Existing Git Clone
If you have work based on a previous Git conversion or a locally running git-svn conversion,

migrating to new repository can encounter problems because Git has no knowledge about the
connection between the two.

If do not have a lot of local changes, the easiest way would be to cherry-pick your changes
to the new base:

% git checkout main
% git cherry-pick old_branch..your_branch

Or alternatively, you can do the same thing with rebase:

% git rebase --onto main master your_branch

If you do have a lot of changes, you would probably want to perform a merge instead. The
idea is to create a merge point that consolidates the history of the old_branch, and the new
source of truth (main).

We intend to publish a set of pairs of SHA1s for this, but if you are running a local conver-
sion, you can find out by looking up the same commit that are found on both parents:

% git show old_branch

You will see a commit message, now search for that in the new branch:

% git log --grep=”commit message on old_branch” freebsd/main

You would get a SHA1 on the new main branch, create a helper branch (in the example we
call it stage) from that SHA1:

% git checkout -b stage SHA1_found_from_git_log
Then perform a merge of the old branch:
% git merge -s ours -m “Mark old branch as merged” old_branch

With that, it’s possible to merge your work branch or the main branch in any order without

problem. Eventually, when you are ready to commit your work back to main, you can perform
a rebase to main or do a squash commit by combining everything into one commit.

WARNER LOSH is a Senior Software Engineer at Netflix and has been a FreeBSD contributor
for over 20 years. Warner has improved a number of systems—for example, the boot loader—
in FreeBSD. Prior to Netflix, he produced flash drives and measured atomic clocks for accuracy.
His code still measures some of the clocks that create UTC!

8 of 8

