
16FreeBSD Journal • January/February 2021

BALLY WULFF Games & Entertainment GmbH is a prominent German company in the enter-
tainment electronics segment that develops, produces and sells cash gaming machines. With its
headquarters located in Berlin, BALLY WULFF operates not only in Germany, but also in Spain,
and currently employs around 300 people.

Since the early 2000s, FreeBSD has been the platform of choice for BALLY WULFF prod-
ucts. Thanks to its invaluable stability and consistency, the system
engineering team is able to meet the ever-changing market de-
mand whether that is for small, disk-space footprint, higher secu-

rity measures, or better graphics. Oftentimes, the team contributes code and documentation
patches back to the community. In addition, many BALLY WULFF employees have served as
FreeBSD committers.

BALLY WULFF is well known for its development process happening entirely in-house. The
final products are the collective work of various BALLY WULFF teams. Collaboration among
product designers, hardware engineers and game developers is the name of the game. Every-
thing from the design of the machines, hardware integra-
tion and game development, to the final production and
assembly of the machines takes place in-house. FreeBSD is
at the heart of it all not only as the operating system in the
final gaming machine, but also in the development work-
stations and production appliances.

This short case study provides a deeper insight into
BALLY WULFF system engineering team’s goals and
explains how FreeBSD helps to achieve them.

Goal 1: Limiting the Disk Footprint of the OS
A BALLY WULFF gaming machine can be thought of

as a huge video game console. What may come as a sur-
prise in the era of IoT is that it is not connected to the In-
ternet, but instead ships with all the software, games and
their assets preinstalled. Once it leaves the production site,
the only way to change the software on a machine is via a
manual update procedure that involves physical storage media like USB sticks. Although no lon-
ger a pressing issue, the older generations of gaming machines posed an interesting challenge
for the system engineers. Disk quotas for each team had to be carefully balanced so that every
game and administrative tool received its fair share of a disk. However, the disks always turned
out to be just a little bit too small to fit all the desired data. As a result, the operating system

BY MATEUSZ PIOTROWSKI

1 of 4

BALLY WULFF

FreeBSD is at the heart
of it all not only as
the operating system
in the final gaming
machine, but also
in the development
workstations and
production appliances.

17FreeBSD Journal • January/February 2021

had to be stripped of all unnecessary bits. FreeBSD, like other, well-designed software projects,
provides a great number of build options capable of excluding everything but essentials from
being compiled.

Unfortunately, the standard build options were not enough. It turned out that in order to
achieve the desired disk footprint, the system engineering team had to gain control of a great-
er granularity over the build process. Luckily, the FreeBSD build system has been engineered,
maintained, and constantly improved with customizability and stability in mind. It is by design
that downstream consumers (and appliance vendors in particular) are able to look under the
hood of the build system, modify it as needed, and expect only a minimal maintenance over-
head caused by the local changes to the source tree.

BALLY WULFF has maintained an internal patch set for the FreeBSD build system to exclude
non-essential files from final OS images. This appliance-specific patch set has naturally fit into
the build infrastructure and does not feel like an external add-on bolted on to an existing en-
vironment. At the same time, it has not caused a significant maintenance burden to the sys-
tem engineering team. As a result, the disk footprint of the OS has been limited to a minimum,
leaving more disk space for games—a real value to customers.

Goal 2: Shipping Modified Packages
The FreeBSD Ports Collection has proven to be an invaluable asset to BALLY WULFF over the

years. It offers a standardized and expandable way of customizing and adding additional soft-
ware to the OS. In fact, it is so straightforward that creating customized packages is one of the
first things new FreeBSD users learn about.

FreeBSD ports developers make sure that the ports
framework evolves steadily and stays backward-compatible
for many years. So even though the FreeBSD Project has
already switched to poudriere within its packaging infra-
structure, users like BALLY WULFF can still migrate at their
convenience. Ultimately, FreeBSD is all about stability with
no unpleasant surprises. As a result, it is easy for the system
engineering team at BALLY WULFF to keep up with the
changes and plan ahead.

BALLY WULFF maintains—internally—a fork of the
FreeBSD Ports Collection with a handful of additional com-
pany-specific ports and patches for the existing ports. Not
only is backporting of the latest versions of ports incredi-
bly easy, but maintaining a custom version of an existing
port is also simple and painless. Another advantage of the
FreeBSD Ports Collection is that the distribution of packages via an internal package repository
is effortless and well-supported.

The FreeBSD Project is constantly adding new improvements to ease the process of extend-
ing private collections of ports that benefit BALLY WULFF directly. The latest example is poudri-
ere, which streamlines package building, testing, and publishing processes. Another important
feature is an overlay support for ports trees, which is currently being tested by the system engi-
neering team at BALLY WULFF. There is a high chance that it will alleviate the need to keep an
internal fork of the ports tree, further reducing maintenance overhead.

2 of 4

It is easy for the
system engineering
team at BALLY WULFF
to keep up with
the changes
and plan ahead.

18FreeBSD Journal • January/February 2021

Goal 3: Customizing System Startup
Typically, general-purpose operating systems feature a program to control the system start-

up. It usually configures the newly booted system, for example, by mounting disks and starting
essential system services like networking.

In the case of a BALLY WULFF gaming machine, the system start-up procedure is quite dif-
ferent from a typical desktop. The standard FreeBSD start-up procedure is configurable enough
to cover most use cases for servers and desktops, but in the case of a gaming machine, it
made sense to replace the standard rc(8) mechanism completely. Luckily, there is no black
magic involved in replacing the standard rc(8) framework with a custom one. Actually, replac-
ing the /etc/rc file is enough to get started. As a result, the system engineering team at BALLY
WULFF maintains a dedicated system start-up script that prepares the OS environment for the
games to launch.

At BALLY WULFF, the customized rc(8) framework has been in use for many releases and it
continues to work flawlessly. This is certainly a benefit of FreeBSD’s steady development prac-
tices and modularization of the base system—it is absolutely reasonable to customize a part
of FreeBSD and expect the rest of the system to work just fine. It definitely gives the develop-
ers peace of mind and lets them focus on developing what is important rather than constantly
catching up with backwards-incompatible, upstream changes.

Goal 4: Supporting Custom Update Procedures
It should come as no surprise that BALLY WULFF gaming machines require regular updates.

Platform updates occur when there is a need to squash an annoying bug or add an important
business functionality to an already-released and operating machine. Much more often, howev-
er, the machines are updated with new games. The update process of the gaming machines is
one of the most important and rigorously tested procedures in the company. Thorough testing
and QA checks guarantee that the updates applied to the machines already operating in the
market are not going to cause any unnecessary downtime. The update process must allow for
unsupervised and automatic installation of new software. Rendering the machine inoperable in
the course of an update is out of the question.

Due to the architecture of the gaming machine’s operating system, it would be unnecessar-
ily complicated to update the system with freebsd-update(8) and pkg(8). Thankfully, FreeBSD’s
simplicity allows for implementing a completely custom update procedure.

Goal 5: Running the Same OS in Both Production and Development
One of the golden rules of software engineering is that development should happen in an

environment identical or at least closely resembling the production environment. Developers do
not have to debug their code twice when working in a unified environment.

BALLY WULFF game developers use FreeBSD workstations to test games before trying them
out on the actual gaming machines. Amazingly, FreeBSD powers the gaming machines and the
workstations equally well.

It is worth noting that the game development department is many times larger than the
FreeBSD team at BALLY WULFF. Nevertheless, maintaining an internal distribution of FreeBSD
tailored specifically to the game developers’ needs is very doable. The same FreeBSD-based OS
runs on both a gaming machine and on a development workstation, the difference being main-
ly the list of installed packages. This is a great benefit of FreeBSD being a general-purpose OS.

3 of 4

19FreeBSD Journal • January/February 2021

Goal 6: Staying Close to the Community
Being close to the community allows BALLY WULFF to both participate in the development

of FreeBSD and to stay in contact with FreeBSD developers. For example, BALLY WULFF aims to
keep the amount of local FreeBSD patches to a minimum. The maintenance burden of non-es-
sential patches is simply not supportable. Not only is upstreaming patches a very sound busi-
ness decision due to additional testing, but it is also a great way to give back to the FreeBSD
community. Most of the time, however, the FreeBSD patches developed internally at BALLY
WULFF are too vendor-specific and not suitable for inclusion in the FreeBSD source trees. Nev-
ertheless, the company makes sure to contribute in other ways as well. BALLY WULFF devel-
opers regularly participate in FreeBSD Developer Summits and open-source conferences like
FOSDEM and EuroBSDcon. In 2019, BALLY WULFF hosted a DevSummit organized at the com-
pany’s headquarters in Berlin.

Summary
FreeBSD has been a great OS for BALLY WULFF thanks to its remarkable build system, which

has been developed and maintained in a way that allows for effective adaptation of the sys-
tem to specialized appliances. In the past, a major benefit of FreeBSD to BALLY WULFF was the
small, yet functional, base system that could be stripped down even further by utilizing existing
build(7) knobs or by introducing vendor-specific changes to precisely control what is included in
the final OS image. The internal patches to FreeBSD base and ports build systems fit naturally
into the consistent Makefile-based infrastructure. All those features allowed the BALLY WULFF
system engineering team to minimize the size of the OS, which, in turn, left more space for
games and their assets as the BALLY WULFF developers continued to push hardware and soft-
ware limits.

Now that disk space is not as precious as it once was, the need for a special patch set re-
ducing the final size of the OS is gone. The focus and energy at BALLY WULFF are directed to-
ward other aspects of system development. It is no longer necessary to heavily modify FreeBSD
sources to optimize for small disk footprint. The transition to building the OS from the unmod-
ified FreeBSD sources is underway. So far, it has been painless and beneficial as it significantly
simplified the build infrastructure. This is a result of a herculean effort by the FreeBSD commu-
nity to maintain backward compatibility wherever feasible. Every major change to the FreeBSD
system is implemented with downstream consumers workflows in mind.

The computing world has evolved quickly and the team’s focus is no longer on making the
system footprint as small as possible. The target now is to increase the robustness of the system
and to keep maintenance costs low. Ultimately, the goal of the BALLY WULFF system engineer-
ing team is to provide game developers with a performant and stable gaming platform.

MATEUSZ PIOTROWSKI is a FreeBSD ports and documentation committer based in Berlin.
He enjoys troubleshooting bugs, scripting automation, and designing robust software systems
(always thoroughly documenting everything along the way). Recently, his interests have drifted
toward tracing and performance engineering. When he is not hacking on the supposedly deter-
ministic circuitry of modern software, he is exploring the ever-changing dynamics within society
and culture.

4 of 4

