
FreeBSD CASE STUDY

OPEN CONNECT
BY GREG WALLACE

21FreeBSD Journal • January/February 2021

Overview
Netflix (NASDAQ: NFLX) is the world’s leading streaming entertainment service with 183 million
paid memberships in over 190 countries enjoying TV series, documentaries and feature films
across a wide variety of genres and languages. Members can watch as much as they want,
anytime, anywhere, on any internet-connected screen. Members can
play, pause and resume watching, all without commercials or commit-
ments. www.netflix.com

Open Connect is the name of the global network that is responsible
for delivering Netflix TV shows and movies to members world-wide.
This type of network is typically referred to as a Content Delivery Net-
work, or CDN, because its job is to deliver internet-based content (via
HTTP/HTTPS) efficiently by bringing the content that people watch
close to where they’re watching it. Open Connect Appliances run a
lightly customized version of FreeBSD. https://openconnect.netflix.com/
Open-Connect-Overview.pdf

Netflix employs several FreeBSD committers and additional mem-
bers of the Open Connect team also contribute code upstream.

Open Connect Pushes Over 100 Tb/s Peak
Those of us old enough to remember the dot com and telecom

boom may recall the emblematic 1999 Quest Communications adver-
tisement in which a weary traveler checks into a hotel in the middle of
nowhere. The clerk promises a lackluster breakfast, but entertainment?

That they have in spades. “Every movie ever made, in any language, anytime day or night.”
Flabbergasted, the guest wonders aloud “how is that possible?” How indeed! (read on).

Twenty years later, and hotel TVs are some of the last devices to provide every movie ever
made. Technology, it seems, is not without a sense of irony.

No discussion of the latest trends in streaming entertainment and the technology that makes
it possible is complete without Netflix. As of April 2019, the Netflix U.S. catalog consisted of
47,000 TV shows and 4,000 movies. Netflix reports that the global Open Connect Network
pushes over 100 Tb/s of traffic at peak. According to Sandvine, this represented about 15% of
total internet traffic in 2019.

INDUSTRY
STREAMING
ENTERTAINMENT
SERVICE

LOCATION
HEADQUARTERS IN
LOS GATOS,
CALIFORNIA

EMPLOYEES
6700
WORLDWIDE

FreeBSD CASE STUDY

22FreeBSD Journal • January/February 2021

Open Connect: A Network And A Program
Netflix began the Open Connect initiative in 2011 as a response to the ever-increasing scale

of Netflix streaming. Two primary reasons motivated the program:

1. As Netflix grew to be a significant portion of overall traffic on consumer Internet Service
Provider (ISP) networks, it became important to be able to work with those ISPs in a direct
and collaborative way

2. Creating a content delivery solution customized for Netflix allowed their engineers to
design a proactive, directed caching solution that is much more efficient than standard
demand-driven CDNs. The directed caching architecture reduces the overall demand on
upstream network capacity by several orders of magnitude.

Client Devices OCAs

Netflix in AWS

Playback
Apps

Steering
Service
(CODA)

Cache
Control
Service
(CCS)

OCA serves files to Client Device6

Client Device requests files from OCA5

Picks OCAs, sends URL
to Client Device4

Determines
required files 3

“Play” request2

Reports health status,
learned routes, and
available files

1

Netflix Playback Process

The Network
Most CDNs work in what’s called a demand-driven way. This means that what the network

caches and where is determined by what is requested in a particular area. For general purpose
CDNs where there is limited ability to predict the content people will want, this works well.

Because Netflix controls the end user apps and has detailed information about viewing
trends, they could achieve significant efficiencies moving to a directed CDN. In the Netflix di-
rected CDN model, their fleet of Open Connect Appliances (OCAs), described in detail below,
receive daily catalog updates during what are called Fill windows when viewing is very low.

The Program
Netflix has an open peering policy, meaning they will peer with any ISP that agrees with the

terms of the program. Open peering improves internet user experience by localizing traffic. It also
has the advantage of reducing transit costs, a benefit to Netflix, ISPs, and the internet as a whole.

In addition to OCAs in Netflix data centers and installed in Internet Exchange Points (IXPs),
Netflix provides OCAs free of charge to qualifying ISPs for installation directly in the ISP’s net-
work. This increases localization and reduces upstream traffic even further.¹ Interestingly, the
fact that these OCAs are owned by Netflix, but used by the ISP, raised some licensing consider-
ations that initially drew the Open Connect engineers to FreeBSD for its permissive license.²

1 See https://openconnect.netflix.com/Open-Connect-Overview.pdf for program information.
2 https://www.nginx.com/blog/why-netflix-chose-nginx-as-the-heart-of-its-cdn/

2 of 7

FreeBSD CASE STUDY

23FreeBSD Journal • January/February 2021

Open Connect Appliances
The workhorses of the Open Connect CDN are the Open Connect Appliances, or OCAs for short.

These appliances, of which there are three primary configurations, run a lightly customized ver-
sion of FreeBSD head, or development, branch. That such a large and mission critical network
would run the fast-moving development branch may at first
blush seem risky. At the 2019 FOSDEM conference, Jonathan
Looney, Netflix Engineering Manager on the team responsible
for maintaining the OCA operating system, explained the ratio-
nale of tracking the FreeBSD head branch.

First, Jonathan and his team find FreeBSD code to be gener-
ally very stable and high quality. Second, they prefer to quickly
find and fix the relatively infrequent and mostly low-impact bugs
they do encounter. Otherwise, Jonathan explains, a development
team that waits for the long-term, or Stable, branch, may end
up in what he calls a vicious cycle of infrequent merges, many
conflicts/regressions, and ultimately slower feature velocity.

Tracking the head branch helps Netflix add features more
quickly. They also find that tracking the head branch makes collaborating with others in the de-
velopment community easier.

Throughput Efficiency
Just how efficient are these OCAs? Using FreeBSD and commodity parts, Netflix achieves 90

Gb/s serving TLS-encrypted connections with ~55% CPU on an Intel 6122 CPU, in 1 RU, with
96GB RAM, and 16TB of NVMe-attached flash storage.

Because it’s their intention to upstream as much code as they can, all FreeBSD users bene-
fit from the many enhancements that help Netflix achieve this kind of performance. Some of
these contributions include NUMA enhancements, Asynchronous send file, Kernel TLS, Pbuf al-
location enhancements, “Unmapped” mbufs, I/O scheduling, TCP algorithms, and TCP logging
infrastructure.

In order to achieve this kind of performance cost-effectively, Netflix engineers realized they
need to reduce context switching between Kernel and user space as much as possible. Async
sendfile is one key technique that helps with this.

The new implementation of the sendfile(2) system call, which is a drop-in replacement for
the previous one, speeds up TCP data transfers because it avoids copying file data into a buffer
before it’s sent. The new version of sendfile further speeds up and simplifies large data trans-
fers by supporting asynchronous I/O.

3 of 7

“Running FreeBSD head lets
us deliver large amounts
of data to our users very
efficiently, while maintaining
a high velocity of feature
development.”
 — Jonathan Looney, Netflix

40Gb/s OCA Storage Appliance with 248TB
storage (2RU form factor)

• FreeBSD
• NGINX
• BIRD internet routing daemon

The new sendfile is a product of a development partnership between NGINX and Netflix,
and was released in tandem with a 2016 Netflix service expansion to nearly 200 countries.

Async Server

user space

kernel space

HTTP
response

HTTP
request

Web Server

File
system

Network
socket

Increasing Efficiency and Privacy — Kernel TLS
To protect the privacy of end users, in 2016 Netflix added Transport Layer Security (TLS). Jan

Ozer summarized this move well in his Streaming Media article:

Netflix had long deployed DRM to prevent piracy, and it protects customer data
during account login and any administration via HTTPS. However, the actual transfer
of the movie data was not protected, so any information contained in the communi-
cations between the server and client could be accessed by hackers, or by network
administrators or ISPs. This information could be used to determine which content
the viewer was watching, and perhaps other details.

Adding TLS encryption efficiently required additional performance enhancements to the
OCA software stack. That’s because existing TLS techniques relied on the web server — an ap-
proach that Netflix’s Director of Streaming Standards Mark Watson reported in 2014 would di-
minish capacity “between 30-53%.”

The answer is kernel-side TLS, or kTLS for short, which marries TLS with the new send-
file model. This hybrid TLS scheme (described by John Baldwin in this vBSDCon 2019 ses-
sion) keeps session management in the application space, and inserts the bulk encryption into
the sendfile data pipeline in the kernel. TLS session negotiation and key exchange messages
are passed from Nginx to the TLS library, and session state resides in the library’s application
space. Once the TLS session is set up and appropriate keys are generated and exchanged with
the client, those keys become associated with the communication socket for the client and are
shared into the kernel.

FreeBSD CASE STUDY

24FreeBSD Journal • January/February 2021

4 of 7

NGINX

KERNEL

Network I/O

Write() Read()

SSL

Session
Management

Bulk
Encryption

Classic TLS Web serving

NGINX

KERNEL

Network I/O

V/M

SSL Session
Management

In-kernel TLS Web Serving

Bulk
Encryption

In their EuroBSD 2019 presentation, Drew Gallatin and Slava Shwartsman show how
kTLS gives a 50 Gb/s boost to bandwidth performance while reducing CPU%. The next
frontier in TLS performance improvement is something called NIC TLS, where the encryp-
tion is done in hardware. As the graph on below shows, this promises to reduce CPU utili-
zation significantly.

Netflix Video Serving with TLS

Kernel TLS Performance 90Gb/s, 68% CPU (SW), 35% CPU (T6 NIC kTLS)
Original (~2016) Netflix 100G NVME flash appliance

E5-2697A v4 @ 2.6GHz (16 core / 32 HTT), 128GB DDR4 2400MT/s, 1x100GbE, 4xNVME

kTLS vs Userspace
Bandwidth %CPU

NO KTLS SW KTLS NIC KTLS
0

25

50

75

10

FreeBSD CASE STUDY

25FreeBSD Journal • January/February 2021

5 of 7

Getting to 200 Gb/s with NUMA
With no end in sight to members’ demand for more shows and higher definition, Netflix

continues to look for ways to increase the throughput of OCAs. With the evolution of high
core count systems, the team has been developing and testing Non Uniform Memory Architec-
ture, or NUMA, support since 2014, and that is now beginning to show results. Where a typi-
cal system has a single CPU, disk and memory, a NUMA system can have many more. As with
sendfile and TLS, this can present throughput-sapping bottlenecks that Netflix engineers have
been hard at work to minimize.

NUMA makes it cheaper for a CPU to access local resources (e.g. memory) and more expen-
sive for it to access resources attached to another node. Consequently, memory and I/O locality
impacts performance. For Netflix to take advantage of NUMA’s greater computation density,
they had to come up with a way to keep as much of the disk-to-CPU-to-network traffic local
to a node and minimize performance-sapping NUMA bus transfers. This led to enhancements,
which are in various stages of being merged upstream, including:

• Allocating NUMA local memory to back files sent via sendfile(9)
• Allocating NUMA local memory for Kernel TLS cryptobuffers
• Directing connections to TCP Pacers and kTLS workers bound to the local domain
• Directing incoming connections to Nginx workers bound to the local domain via
modifications to SO_REUSEPORT_LB listen sockets

In tests, these enhancements have improved Xeon performance from 105Gb/s to 191Gb/s
While reducing NUMA fabric utilization from 40% to 13%. For AMD EPYC, performance in-
creased from 68Gb/s to 194Gb/s.

Four Node Configurations are
Common on AMD EPYC

RAM

RAM

RAM

RAM

NIC

NIC

FreeBSD CASE STUDY

26FreeBSD Journal • January/February 2021

6 of 7

FreeBSD Gives NETFLIX Three Kinds Of Efficiency: Throughput,
Development, and Operations

In response to the FAQ “why FreeBSD?” Jonathan says they came for the license and stayed
for the efficiency — efficiency that Netflix measures in three ways:

1. Throughput, or performance, efficiency described in the previous section
2. Development efficiency
3. Operational efficiency

From a development perspective, the ease of working with the FreeBSD community helps
Netflix upstream their enhancements for ongoing maintenance by the community. They also
enjoy collaborating with others in the community that are working on the same area. Sharing
code with these other community members can improve the code all parties are developing.

Finally, the huge fleet of OCAs requires sophisticated tooling for monitoring and operations.
Some of the tools they’ve needed already existed, and the rest they have written. For the latter,
Jonathan has found FreeBSD does a good job surfacing the necessary hooks and, where not,
the team has been able to implement them.

What’s Coming Next from the Open Connect Brain Trust
In addition to NUMA and ongoing exploration of NIC TLS, the team is working on up-

streaming some enhancements to kTLS and on UFS enhancements.
In closing, the massive scale of Open Connect combined with the team’s focus on efficien-

cy and their commitment to open source means that every FreeBSD user with a similar use case
can reap the same performance benefits. The ability to turn on kTLS and take advantage of
Async Sendfile allows anyone serving static content over HTTPS to extend their hardware life-
time, reduce density, and deliver a great user experience more efficiently.

GREG WALLACE is a freelance technology marketer who has been working with open source
software and communities since 2005. In addition to his current work with the FreeBSD Foun-
dation, Greg dabbles in Kubernetes, security, DevOps, and routing. Previously, he led marketing
for Node.js, ODPi, and Hyperledger.

FreeBSD CASE STUDY

27FreeBSD Journal • January/February 2021

7 of 7

