
22FreeBSD Journal • March/April 2020

With FreeBSD 13.0, numerous improvements were made to the cc_cubic loadable congestion
control module. TCP Cubic was originally implemented by Lawrence Stewart during his time at
Swinburne University of Technology, Center for Advanced Internet Architectures based on an
early draft of what eventually became RFC8312. TCP Cubic has become the de-facto standard
congestion control mechanism in use today.

TCP Cubic
The default TCP congestion control in use by FreeBSD for the longest time is name NewRe-

no—a variant of the Reno congestion control mechanism with improved loss recovery. The job
of a congestion control algorithm is to detect and prevent an overload situation of the network
where more data is injected than can be transported or
delivered. NewReno used to be the gold standard in this
space but does suffer a few restrictions.

While Van Jacobson has shown that any AIMD (addi-
tive increase, multiplicative decrease) scheme exhibits a
stable operation for controlling the traffic, with modern
high-speed links, the time it takes NewReno to ramp up
the effective transmission speed is lackluster. If an over-
load situation is detected--typically using an explicit sig-
nal like a packet loss or specific bits in the TCP/IP head-
ers—NewReno will reduce the effective transmission
speed—and I use this term loosely, to not get bogged
down on details like available data to transmit, con-
gestion window and burst behavior, and timing when
the application is ready to send more data—to 50% of the speed at the time the overload oc-
curred. With a sufficient amount of data to transmit, provided by the local application at a suf-
ficiently high speed, NewReno will then ramp up the transmission speed by roughly 1 full-sized
packet every round-trip time (RTT).

BY RICHARD SCHEFFENEGGER

1 of 3

TCP Cubic
Is Ready
to Take Flight

The job of a congestion control

algorithm is to detect and

prevent an overload situation of

the network.

23FreeBSD Journal • March/April 2020

But running these numbers using modern networking technology, e.g. 10G links across the
country with a latency of 100ms, it may take a singular NewReno session up to (5 Gbps / (1500
* 8)) * 0.1 sec RTT ~= 10 hours to ramp back up to utilize all the available bandwidth—provid-
ed no other packet drops (as indication of congestion) happen.

Low average
Bandwidth

Fast recovery

time

da
ta

 in
 fl

ig
ht

Co
ng

es
tio

n a
vo

ida
nc

e
(lin

ea
r)Throughput

reduction
by 50%

• Brittle loss response, non-scalable growth
• Non-scalable linear growth:
 Needs 1000x more time to reach 1000x higher bandwidth
• To fully utilize a 10G, 100ms path, requires >1 hr between losses
 Loss rate <0.0000000002 (<2•10-10)

Default TCP Mechanism for over 20 years
Reno

Background
load rem

oved

While TCP—when sending unlimited amounts of data—is designed to probe and eventually
exceed the maximum bandwidth of the network, slow ramp-up is detrimental to this goal.

TCP Cubic addresses these limitations with two major changes. The first one is to reduce the
speed only to 70% (80% in early drafts) of the transmission speed at time of overload. The
second is to ramp up afterwards using a cube function which is scaled in such a way as to lin-
ger around the previous limit for a good time, but ramping up to that limit quickly--and if the
available bandwidth of the network is no longer as restricted, to ramp up faster and faster, ef-
fectively matching the exponential bandwidth growth during TCP slow start.

High average
BandwidthCongestion

avoidance

Fast recovery

Background
load rem

oved

time

da
ta

 in
 fl

ig
ht

(c
ub

ic
)

Throughput
reduction
by 20%

• Higher average bandwidth and speedier ramp up may expose latent
 problems in the network
 • Monitor Retransmissions and Retransmission Timeouts, if degraded
 performance is reported.

• Growth following cubic (x3) function
 Needs 10x more time to reach 1000x higher bandwidth -> 100x more agression

• Majority of environments will see better performance.

• To fully utilize a 10G, 100ms path, requires >40 sec between losses
 Loss rate <0.0000000003 (<3•10-8)

Modern TCP Mechanism – current Industry Standart
Cubic

While all these foundations were implemented—including a fast integer approximation for
calculating the cube-root--some of the parameters did change between the cubic draft of 2007
and ultimate RFC8312. Thus, some work was necessary to being the existing code in-line with
the RFC.

2 of 3

24FreeBSD Journal • March/April 2020

In the meantime, most other major OSs adopted Cubic as their default congestion mecha-
nism, as in a direct competition between NewReno and Cubic, a flow using NewReno will get
less share of the bandwidth available. Fortunately, Cubic was designed in a way to not fully
starve out other congestion control mechanisms.

The existing code also assumed some implicit limits in the cubic code, which do not always
hold with general purpose traffic patterns. A number of edge cases were not fully addressed.
For example, nowadays, application-limited sessions are the norm. This is when TCP basically
runs out of data to send, and all the state engines driven by processing more data have a dis-
continuation in time. As Cubic uses wall clock time rather than the passing of data over the ses-
sion…<== rather than D23655 (cubic and slot start interaction) <== slow start…this has creat-
ed some undesirable effects. (Author—is this change correct or did we misunderstand?)

While starting to run Cubic as a general-purpose congestion control on FreeBSD, the follow-
ing issues were addressed without any claim of this being a complete list. Some general issues
with the TCP base stack also showed up and were fixed while working on Cubic.

D26181 (editorial nit)
D26060 (adjust cwnd continuously, not only once per window – leading to massive traffic
bursts)
D25976 (treat ECN like packet loss for Cubic)
D25746 (properly time the start of a cubic epoch with slowstart)
D25133 (cubic and RTO interaction)
D25065 (cubic and application limited)
D24657 (editorial)
D23655 (cubic and slot start interaction)
D23353 (cubic and ECN)
D19118 (deal with overflows during cubic math)
D18982 (prepare for good cubic math)
D18954 (cubic and After-Idle)

Overall, the foundation of cubic that has been available since FreeBSD 8.0 has been a sol-
id foundation of the basic functionality and algorithms. A lack of production deployment left a
number of corner cases and boundary conditions—e.g. for very long running TCP sessions--un-
checked.

With the above improvements done, exercising the TCP Cubic variant in FreeBSD 13.0 should
allow for slightly better throughput, especially across the public internet with high latency ses-
sions. Nevertheless, additional exposure to peculiar traffic patterns may still show some short-
comings, even though the code is now in a more robust state to deal with most scenarios.

Not only was Lawrence Stewart very helpful in this improvement effort, but much of the
heavy lifting was performed by Cheng Cui, especially doing regression and unit testing as well
as finding all these edge cases and providing code improvements. There have also been many
productive discussions on the bi-weekly FreeBSD Transport group calls.

RICHARD SCHEFFENEGGER is Consulting Solution Architect at NetApp.

3 of 3

