
25FreeBSD Journal • March/April 2020

ZFS is a highly advanced filesystem with integrated volume manager that was added to
FreeBSD in 2007 and has since become a major part of the operating system. ZFS includes a
transparent and adjustable compression feature that can seamlessly compress data before stor-
ing it and decompress it before returning it for the application’s use. Because the compression
is managed by ZFS, applications need not be aware of it. Filesystem compression not only saves
space, but in many circumstances, can even lower read and write latency by reducing the total
volume of data that needs to be stored or retrieved.

Originally ZFS supported a small number of compression algorithms: LZJB (an improved Lem-
pel–Ziv variant created by Jeff Bonwick, one of the co-creators of ZFS, it is moderately fast but
only offers low compression ratios), ZLE (Zero Length
Encoding, which only compresses runs of zeros), and
the nine levels of gzip (the familiar slow, but moderately
high-compression algorithm). Users could thus choose
between no compression, fast but modest compression,
or slow but higher compression. Unsurprisingly, these
same users often went to great lengths to separate out
data that should be compressed from data that was
already compressed in order to avoid ZFS trying to re-
compress it and wasting time to no benefit. For various
historical reasons, compression still defaults to “off” in
newly created ZFS storage pools.

In 2013, ZFS added a new compression algorithm,
LZ4, which offered both higher speed and better compression ratios than LZJB. In 2015, it re-
placed LZJB as the default when users enable compression without specifying an algorithm.
With this new high-speed compressor, combined with an existing feature called “early abort,”
it became feasible to simply turn on compression globally, since incompressible data would be
detected and skipped quickly enough to avoid impacting performance. The early abort fea-
ture works by limiting the size of the output buffer given to the compression algorithm to one-
eighth smaller than the input buffer size. If the compression algorithm cannot fit the output
into that smaller buffer, it fails and returns an error. As a result, the algorithm can preemptively
disengage if it is not going to provide sufficient gains, in which case the data is stored uncom-
pressed to avoid the overhead of decompressing a block that was barely compressed. In fact,
enabling LZ4 compression on everything is so low impact that this set-and-forget configuration
is very common and has even been the default in FreeNAS for many years.

BY ALLAN JUDE

1 of 6

Zstandard
Compression
in OpenZFS

In 2015, LZ4 replaced LZJB as

the default when users enable

compression without specifying

an algorithm.

26FreeBSD Journal • March/April 2020

The Project Begins
The project started in the fall of 2016 after the author had to miss the OpenZFS Developer

Summit due to a scheduling conflict with EuroBSDCon. The goal was to integrate a recently an-
nounced new compression algorithm into OpenZFS. Zstandard (Zstd for short) was created by
Yann Collet, the original author of LZ4. The purpose of the new algorithm was to provide com-
pression ratios similar to gzip (with even greater flexibility, offering more than twenty levels to
gzip’s nine!) but with speeds comparable to those seen with LZ4.

As the project began, we immediately ran into issues with stack size since Zstd was written
as a userspace program and had a penchant for large stack variables. This was a problem for
integrating Zstd into the kernel, where the stack was limited to 16 KB, and had to support all of
the other layers of the operating system before and after the compression integrated into the
filesystem. We temporarily sidestepped this problem by just increasing the stack size in our de-
velopment kernel and got the first version of ZFS with Zstd compression working after a few
weeks of work. Then we set about modifying Zstd to instead use heap memory returned by
the kernel malloc framework to reduce stack usage. This was difficult as there were often mul-
tiple exit paths from functions where the allocated memory needed to be freed. After only lim-
ited success, the project was set aside for a while, knowing when we came back to it, it was
likely to be even worse, as all of the local patches would need to be rebased forward to a new-
er version of Zstd.

Luckily, when it came time to return to the project, Zstd version 1.3 had been released, with
greatly reduced stack usage, while also allowing the caller to manage their own memory allo-
cation. With these welcome improvements, Zstd would no longer require extensive modifica-
tions for kernel integration. In the end, only superficial changes were required, and Zstd could
be used largely unmodified.

By the fall of 2017 and the next OpenZFS Developers Summit, we had a working prototype
to demo at the conference. The summit provided an invaluable opportunity to talk to experts
and much more experienced developers about remaining challenges. One of these was how to
have the user provide the compression type (Zstd) and the level (1-19) in a way that would not
result in fatal confusion should a user later change the compression type to gzip, where a lev-
el like “19” might be invalid. This issue was mentioned during the talk, and afterwards Robert
Mustacchi came up and suggested a remarkably elegant solution: only expose the compression
type to the user offering the different levels of Zstd but store them internally in ZFS as separate
values. While that whole conversation took less than two minutes of his time, it saved many
weeks of work. During the breaks, we also talked to a few people about any ideas they might
have to solve other issues, and what uses they might have for Zstd.

We presented our progress at BSDCan 2018 and there was a good deal of interest. Though
there was still much to be done before it could be committed, the prototype showed how
much benefit Zstd could provide to ZFS and FreeBSD.

Beyond the Prototype
After getting the initial functionality working, there were larger integration issues to address.

How will this all integrate into ZFS? In the ZFS on-disk format, the compression type is stored
in an 8-bit field in each block pointer. The top bit had already been borrowed to represent em-
bedded block pointers, for the case where a block compresses so well (112 bytes), that it can
be stored directly in the block pointer in place of the disk addresses and checksum, and there-
fore does not require its own allocation on disk. This means that no more than 127 compres-

2 of 6

27FreeBSD Journal • March/April 2020

sion algorithms are possible, and another bit may need to be borrowed in the same way in the
future. A number of slots are already used: The value 0 does not actually mean no compres-
sion, it indicates that compression is inherited from the parent object. With levels for on, off,
lzjb, empty (a whole block consisting entirely of zeros), gzip 1 through 9, ZLE, and LZ4, the first
15 values are already used. In the end, this Zstd patch introduced 41 additional compression
levels (1-19, “fast” 1-9, “fast” 10-100 in increments of 10, “fast-500” and “fast-1000”), which
could lead to very few possibilities left in the compression field in the on-disk format. After ex-
amining how the compression field in the block pointer is used, it became clear that the on-
disk format only needs to map the compression setting to the correct decompression function,
which is the same for all Zstd levels. At the time, it did not seem like it would be necessary to
store the specific level of Zstd a block was compressed with.

After further work, it was discovered that sometimes we actually do need to know what
level a block was compressed with. Namely, in the (presumably infrequent) case where the
compressed ARC feature is disabled, the L2ARC would
consistently fail with checksum errors. The L2ARC is
a second-level cache that copies data at risk of being
evicted from the primary ARC. By design, the L2ARC
avoids the overhead of keeping its own copy of the
checksum of each block, and instead refers to the
checksum in the original block pointer. This means each
block must be recompressed with the exact same set-
tings before being written into the L2ARC. When read-
ing back from the L2ARC, the block is checksummed
and compared to the on-disk block and the original
checksum. With the previous compression algorithms,
there were no additional parameters to consider, but
with Zstd, recompression at the default level would
most likely generate a different output, and therefore
mismatched checksums.

To solve this, we extended an existing concept used
in LZ4, where the first 4 bytes of a compressed block
on disk are used to store the compressed length of the
block. Since allocations on disk will always be whole sectors, this allows LZ4 to avoid reading
and attempting to decompress the random data in the slack space between the end of the
compressed data and the end of the sector. Zstd compressed blocks use a larger header and
store the version of Zstd and the level of compression in addition to the size. We decided to
store the version of Zstd used to make it easier to upgrade the version of Zstd in the future, giv-
ing us the possibility to include multiple versions of the Zstd compression functions, so that a
block could always be recreated if required. This is most likely to come in handy for the “NOP-
write” feature: when a block is to be overwritten, ZFS can compare the checksum of the new
block, and if it is the same as the old block, it does not need to rewrite the data. This type of
operation is very common with Oracle databases and may also happen with certain types of
backup software. If the original block is compressed with an older version of Zstd but now re-
compressed with a newer version, this could lead to a loss of this optimization. If ZFS is able to
detect this situation, and attempt compression with the older version of Zstd, it can avoid the
unexpected growth of snapshots of an Oracle database.

3 of 6

After further work, it was

discovered that sometimes

we actually do need to

know what level a block was

compressed with.

28FreeBSD Journal • March/April 2020

Where Zstd Shines
Zstandard provides a large selection of compression levels, allowing the storage administra-

tor relatively fine-grained control over balancing performance and compression ratio. One of
the main advantages of Zstd is that the decompression speed is independent of the compres-
sion level. For data that is written once but read many times, Zstd allows the use of the high-
est compression levels without a performance penalty. When writing large amounts of data,
ZFS compresses each record individually, so it is able to take advantage of the many processor
cores available on modern systems. Even when data is updated frequently, there are often per-
formance gains that come from enabling compression. One of the biggest advantages comes
from the compressed ARC feature--itself a recent improvement in ZFS. ZFS’s Adaptive Replace-
ment Cache (ARC) now caches the compressed version of the data in RAM and decompresses
it each time it is requested. This allows the same amount of cache to store more (often much
more) logical data and metadata, increasing the cache hit ratio, and improving performance for
the most frequently and most recently accessed data. If upgrading from LZ4 to Zstd increas-
es the on-disk compression ratio, those gains directly multiply the efficacy of every byte in the
compressed ARC.

In the chart below, we compare storing a large uncompressed tarball of FreeBSD source
code on ZFS using a variety of compression algorithms and levels. The test system used four
striped SATA SSDs, the read speed without compression was limited by the available through-
put of the underlying storage devices to around 1.5 GB/s, however, as the compression ratio of
the data goes up, the read speed generally increases as well, since the limiting factor is still how
fast the compressed data can be brought in from the underlying storage. Compared to gzip,
Zstd decompresses much faster, and wastes few of these gains as it does not generally require
more CPU time in decompression.

4000

4.0

3.0

2.0

2000

4887

zstd-1

2508

gzip-1

4541

zstdfast-1

4090

Iz4

3792

zstdfast
-10

2460

zstdfast
-50

zstdfast
-1000

Mbytes/sec

Decompression Speed vs Compression Ration (128k Records, SSD)

Compression Ratio Baseline

1547

off zstd-3

2857

gzip-9

4760

zstd-5

4975

zstd-7

5084

zstd-9

4719

zstd-15

4651

zstd-19

4841

1630

Compression Algorithm

4 of 6

29FreeBSD Journal • March/April 2020

Interestingly, using a larger ZFS “record size” allows even greater ratios. The reason for this
is ZFS compresses each record independently, so record size has a large impact on the possible
compression gains; the larger the record, the more optimal the compression dictionary. gzip-
9 sees the compression ratio increase from 4.3x to 4.7x, it only gains a modest 8% additional
throughput, while Zstd-9 boots its ratio from 4.9x to 5.5x and gains 28% more performance,
reaching more than four times the throughput the hardware is capable of.

4000

5.0

6.0

4.0

3.0

2.0

2000

6000
6270

zstd-1

2662

gzip-1

5770

zstdfast-1

4508

Iz4

4049

zstdfast
-10

2561

zstdfast
-50

zstdfast
-1000

Mbytes/sec

Decompression Speed vs Compression Ration (1024k Records, SSD)

Compression Ratio Baseline

1547

off zstd-3

5884

gzip-9

5819

zstd-5

6283

zstd-7

6532

zstd-9

6660

zstd-15

6294

zstd-19

3093

1639

Compression Algorithm

One thing to be aware of is that ZFS will not store a block compressed if the savings from
compression do not result in the savings of at least one disk sector. For example, on a typi-
cal database filesystem, with a recordsize of 16 KB, if the compression ratio is 1.32x, resulting
in the final block being 12.1 KB, it will still require the same four 4 KB sectors to be stored, so
it will be less work to just store the data uncompressed. However, if the compression ratio is
1.34x, requiring 11.9 KB of storage space, this can be achieved with just three 4 KB sectors, so
ZFS will use the compressed version. The compressionratio property of a dataset returns the av-
erage of all the records.

What’s Next?
The integration of Zstd into ZFS has just begun and the future undoubtedly holds many im-

provements. Already, we have thoughts along these lines. For example, we expect using the
advanced Zstd API to provide more hints about the maximum size of the input data could re-
duce memory usage and improve Zstd’s ability to take advantage of “early abort,” which we
spoke of early in the article. There are likely a number of opportunities to optimize the way ZFS
sets up and tears down Zstd compression contexts and to increase the reuse of these contexts
with the Zstd reset API, which one would expect to significantly improve compression perfor-
mance with small blocks.

Aside from continuing to optimize Zstd for ZFS, the next obvious evolution is to remove the

5 of 6

30FreeBSD Journal • March/April 2020

need for the user to decide what Zstd level is best (there are 40 options to choose from after
all). Instead, we envision a user simply setting compress=zstd-auto and ZFS dynamically adapts
in some sensible way. When using Zstd from the command line, to compress a stream being
sent over the network, the user can specify—adapt=min=3,max=10 and Zstd will vary the
compression level based on how quickly the network buffer is emptied. This ensures that the
compression is not a bottleneck by lowering the compression level if the network has available
bandwidth, or conversely, by increasing the time spent on compression if the network is not
able to keep up with the current compression level.

In ZFS, this would likely be modelled on the amount of “dirty” data (data waiting to be
compressed and written to disk). When new data is written to ZFS, it will be compressed with
the maximum compression level. If the rate of incoming writes is too high for ZFS to keep up
with the requested level of compression, which results in the amount of dirty data steadily in-
creasing, the compression level would lower incrementally, ideally settling on the maximum lev-
el that does not limit throughput. As always, the ZFS
philosophy is to make sensible use of system resources
while minimizing the need for adjustment and tweaking
by the user.

Conclusion
Zstd support shipped as part of the recently released

OpenZFS 2.0, which is available as replacement for the
base ZFS in FreeBSD 12.2 via the sysutils/openzfs pack-
age and is integrated into the FreeBSD 13.0 develop-
ment branch.

I want to give a special thanks to everyone at the
FreeBSD Foundation for the grant that made it pos-
sible to get this long-running project finished and
merged in time for OpenZFS 2.0. Thanks also to Sebas-
tian Gottschall, Kjeld Schouten-Lebbing, and Michael
Niewöhner who did the Linux port, including the addi-
tional kmem compatibility code, and creating most of
the tests included in the final patch. I also want to thank
the team that worked to integrate FreeBSD support into the upstream OpenZFS repo, and ev-
eryone at the OpenZFS project. Lastly, my thanks also go out to everyone who tested and re-
viewed the many versions of the patches over the years until it was finally committed.

ALLAN JUDE is VP of Engineering at Klara Inc., a global FreeBSD Professional Services and
Support company. He also hosts the premier weekly BSD podcast, BSDNow.tv and served on
the FreeBSD Core team from 2016 to 2020. He is the co-author of “FreeBSD Mastery: ZFS” and
“FreeBSD Mastery: Advanced ZFS” with Michael W. Lucas.

5 of 6

When new data is written to

ZFS, it will be compressed with

the maximum compression level.

