
14FreeBSD Journal • May/June 2021

Memory copying between user and kernel address spaces is a crucial operation performed as
part of system calls. It is used to copy system call arguments as well as a system call result. The
current copy function prototypes are type-agnostic and copy a number of bytes from an arbi-
trary buffer. When a kernel copies its memory to the user space, it must make sure it does not
leak any kernel data that might include secrets. This article describes the limitations of the cur-
rent copy functions in FreeBSD and CheriBSD [1] and proposes a framework that could improve
the security and code quality of system call handlers.

The described copyinout framework was implemented as part of the MSc thesis entitled
“Capability-aware memory copying between address spaces” [2] under supervision from Ken
Friis Larsen, University of Copenhagen, and David Chisnall, Microsoft Research Ltd. The original
idea of the type-aware copyin and copyout API was proposed by David Chisnall.

Memory Copy Functions in FreeBSD
FreeBSD includes two main functions that copy memory between address spaces: copyin()

and copyout() (see Listing 1). Both functions take three arguments: a source address, a desti-
nation address, and a number of bytes to be copied. copyin() copies len bytes from the us-
er-space address udaddr to the kernel-space address kaddr. copyout() works in the opposite
direction and copies len bytes from the kernel-space address kaddr to the user-space address
udaddr. The functions return 0 on success and EFAULT if an invalid address was passed.

int copyin(const void * __restrict udaddr, void * _Nonnull __restrict kaddr, size_t len);
int copyout(const void * _Nonnull __restrict kaddr, void * __restrict udaddr, size_t len);

Listing 1. copyin() and copyout() function prototypes in FreeBSD 13.0-RELEASE.

Directly from the function prototypes, we can identify one potential security issue. The copy
functions operate on arbitrary buffers. In case a buffer contains a structure object with padding
between structure fields, the padding is also copied. A padding leak with sensitive information
is commonly known as a kernel memory disclosure or a kernel memory leak. Such bugs can re-
sult in escalated privileges. They are not specific to FreeBSD and can be found in numerous op-
erating systems [3] [4] [5] as well as they have been a subject of extensive research of detection
[6] and mitigation [7] [8] [9] techniques.

BY KONRAD WITASZCZYK

1 of 11

The copyinout
Framework
ABI-independent, type-aware, capability-aware,
copyin and copyout API in FreeBSD and CheriBSD

15FreeBSD Journal • May/June 2021

The copy functions are used by system call handlers to copy system call arguments from the
user space to the kernel space and copy system call results from the kernel space to the user
space. Since the system calls are very frequently executed, kernel developers must provide copy
function implementations with the lowest possible overhead. This can be achieved by providing
machine-dependent implementations in an assembly language. Depending on a CPU architec-
ture, the copy functions can also make use of security features if a CPU model provides them.
For example, implementations for amd64 (see amd64/amd64/support.S) support Supervisor
Mode Access Prevention (SMAP).

ABI Support
FreeBSD includes support for multiple ABIs. In particular:
• Native ABI for programs compiled for the same target as the kernel;
• 32-bit ABI for a 32-bit version of an architecture for which the kernel was compiled;
• Linux ABI for Linux user-space programs.
The ABIs are implemented as compatibility layers. Each compatibility layer provides its system

call handlers that implement additional logic required to be executed before or after the kernel
enters or returns from kernel routines that operate on native ABI objects. This includes copying
and translating objects between address spaces, e.g. for the 32-bit ABI, a pointer in a system
call argument or a system call result must be translated from or to a 32-bit pointer.

System Call Handlers
The kernel calls a specific system call handler with copied in system call arguments each time

a user-space program makes a system call. For each supported ABI, the kernel keeps a
sysentvec structure object (see Listing 2) describing ABI-specific properties and functions
to be used by the kernel when a program is being executed. The structure includes the
sv_table array with system call handler function pointers at stored positions specified by their
corresponding system call numbers, and the sv_fetch_syscall_args function pointer to an
architecture-specific function that copies in system call arguments.

As an example, let’s consider the jail(2) system call. This system call has one argument:
a pointer to a jail structure object (see Listing 3). The jail structure includes parameters
describing the prison (see Listing 4). Once a user-space program performs the jail system
call and enters the privileged mode, the kernel calls the jail system call handler — the
sys_jail() function (see Listing 5) with already copied-in jail system call arguments — a
jail_args structure object. The system call handler copies in a jail structure and calls the
kern_jail kernel routine that implements jail system call logic.

struct sysentvec {
 (...)
 struct sysent *sv_table;
 (...)
 int (*sv_fetch_syscall_args)(struct thread *);
 (...)
}

Listing 2. sysentvec structure describing ABI-specific properties and functions.

2 of 11

16FreeBSD Journal • May/June 2021

struct jail_args {
 char jail_l_[PADL_(struct jail *)];
 struct jail * jail;
 char jail_r_[PADR_(struct jail *)];
};

Listing 3. jail system call arguments structure for the native ABI.

struct jail {
 uint32_t version;
 char *path;
 char *hostname;
 char *jailname;
 uint32_t ip4s;
 uint32_t ip6s;
 struct in_addr *ip4;
 struct in6_addr *ip6;
};

Listing 4. jail structure for the native ABI.

int
sys_jail(struct thread *td, struct jail_args *uap)
{
 (...)
 int error;
 struct jail j;

 (...)
 error = copyin(uap->jail, &j, sizeof(struct jail));
 if (error)
 return (error);
 (...)
 return (kern_jail(td, &j));
}

Listing 5. jail system call handler for the native ABI.

Compatibility Layers
Compatibility layers provide system call implementations for non-native ABIs. In particu-

lar, the 32-bit ABI is implemented as the freebsd32 compatibility layer. Let’s consider the same
jail system call for the 32-bit ABI. The 32-bit version of the jail arguments structure is called
freebsd32_jail_args (see Listing 6) and includes a pointer to an object of the 32-bit ver-
sion of the jail structure called jail32 (see Listing 7). The only differences between the jail
and jail32 structures are architecture-independent field types. Each pointer is replaced with a
32-bit unsigned integer. Since pointers are 32-bit unsigned integers in 32-bit architectures, this
change guarantees that the jail32 structure compiled for a 64-bit kernel has the same layout
as the jail structure compiled for a 32-bit kernel.

The jail system call handler for the 32-bit ABI is implemented as the freebsd32_jail
function (see Listing 8). The function copies in a 32-bit jail object, translates each field for its

3 of 11

17FreeBSD Journal • May/June 2021

native ABI version using macros (see Listing 9) and calls the same kern_jail kernel routine as
in the native ABI case. This means that the only difference between the native ABI and the 32-
bit ABI in the jail system call handler is translating a user-space jail object to its native ABI
version that can be used by the kernel.

struct freebsd32_jail_args {
 char jail_l_[PADL_(struct jail32 *)];
 struct jail32 * jail;
 char jail_r_[PADR_(struct jail32 *)];
};

Listing 6. jail system call arguments structure for the 32-bit ABI.

struct jail32 {
 uint32_t version;
 uint32_t path;
 uint32_t hostname;
 uint32_t jailname;
 uint32_t ip4s;
 uint32_t ip6s;
 uint32_t ip4;
 uint32_t ip6;
};

Listing 7. jail structure for the 32-bit ABI.

int
freebsd32_jail(struct thread *td, struct freebsd32_jail_args *uap)
{
 (...)
 int error;
 struct jail j;

 (...)
 struct jail32 j32;

 error = copyin(uap->jail, &j32, sizeof(struct jail32));
 if (error)
 return (error);
 CP(j32, j, version);
 PTRIN_CP(j32, j, path);
 PTRIN_CP(j32, j, hostname);
 PTRIN_CP(j32, j, jailname);
 CP(j32, j, ip4s);
 CP(j32, j, ip6s);
 PTRIN_CP(j32, j, ip4);
 PTRIN_CP(j32, j, ip6);
 (...)
 return (kern_jail(td, &j));
}

Listing 8. jail system call handler for the 32-bit ABI.

4 of 11

18FreeBSD Journal • May/June 2021

#define CP(src, dst, fld) do { \
 (dst).fld = (src).fld; \
} while (0)

#define PTRIN(v) (void *)(uintptr_t)(v)
#define PTRIN_CP(src, dst, fld) do { \
 (dst).fld = PTRIN((src).fld); \
} while (0)

Listing 9. Helper macros used by the jail system call handler for the 32-bit ABI.

The copyinout API
Kernel memory disclosure and code duplication issues described in the previous sections are

implications of type-unawareness of the copy functions. If copyin() and copyout() functions
were aware of a structure of an underlying object stored in a copied buffer, they could copy
fields of the objects and translate them if a user process ABI differs from the kernel ABI.

To eliminate these problems, we introduce the copyinout API. For each type foo that is
copied between the user space and the kernel space, we introduce type-aware copy function
variants (see Listing 10) that copy each field of the type foo and translate them from a source
ABI to a destination ABI, e.g. a 32-bit pointer is translated to a 64-bit pointer for a 32-bit pro-
cess on a 64-bit architecture. Additionally, the copy functions can perform additional operations
depending on a CPU model, e.g. a kernel compiled for a CHERI CPU [11] can create CHERI ca-
pabilities [12] to set bounds or permissions for a field. In contrast to the original copy functions,
the type-aware copy functions take only two arguments: a source address and a destination
address. copyin_foo() copies an object stored at the uaddr user-space address to an object
stored at the kaddr kernel-space address. copyout_foo() works in the opposite and copies an
object stored at the kaddr kernel-space address to an object stored at the uaddr user-space
address. For example, the jail structure described in the previous sections could be copied in
using the following function call:

copyin_jail(uap->jail, &j);

int copyin_foo(const void *uaddr, struct foo *kaddr);
int copyout_foo(const struct foo *kaddr, const void *uaddr);

Listing 10. copyin() and copyout() function variants for the type foo.

The copyinout Framework
Implementations of the type-aware copy functions are independent of the copyinout API

itself. In order to provide the implementations, we introduce the copyinout framework that
consists of:

• Type annotations describing what copy functions should be generated for a type;
• A table of copy function pointers for each ABI;
• A kernel interface to dynamically register copy functions and call them;
• A code-generating tool that generates copy functions based on the type annotations.

The kernel defines type annotations that indicate what copy function should be generated:
• __copyin to generate copyin();
• __copyout to generate copyout();
• __copyinout to generate both copyin() and copyout().

5 of 11

19FreeBSD Journal • May/June 2021

Additionally, the kernel defines field annotations that describe what value is stored in a field:
• __uaddr_array(bar) for a field that stores a pointer to an array with a number of ele-
ments stored in the field bar;

• __uaddr_bounded(bar) for a field that stores a pointer to a buffer with a number of
bytes stored in the field bar;

• __uaddr_code for a field that stores a code pointer;
• __uaddr_object for a field that stores a pointer to an object;
• __uaddr_unbounded for a field that stores a pointer to a buffer with an unknown num-
ber of bytes;

• __uaddr_str for a field that stores a pointer to a string and hence its bounds can be
computed with strlen().

The field annotations can be used to generate copy functions that make use of security-re-
lated mechanisms, e.g., construct CHERI capabilities. Having the copyinout framework inte-
grated, a kernel developer who wants to generate new copy functions for the type foo de-
fined in Listing 11 must only add appropriate annotations and run the code-generating tool. In
this case, the generated copy functions copy the field len and translate the pointer stored in
the pointer array. Additionally, in CheriBSD, they construct the bounded capability array with
bounds set to a value stored in the field len as part of the field translation.

struct foo { | struct foo {
 size_t len; | size_t len;
 int *array; | __uaddr_array(len) int * __capability array;
}; | } __copyinout;

Listing 11. Type foo before and after copyinout changes.

In order to provide separate copy functions for different ABIs, the copyinout framework im-
plements the copyinout table with type-specific copyin() and copyout() function point-
ers (see Listing 12) as part of the sysentvec structure (see Listing 13 as compared to Listing 2).
Each ABI allocates its own copyinout table that is dynamically filled with entries using the SYS-
INIT framework through the Linker Set technique [10]. The SYSINIT() and SYSUNINIT() macro
calls for the ABIs are generated by the code generating tool alongside generated copy functions.
This allows generating copy functions that are used within a kernel module and should be reg-
istered and unregistered when the module is loaded and unloaded. With the copyinout ta-
ble, the copyinout API can be defined as in-kernel macros that cast pointers and call functions
from a copyinout table corresponding to an ABI of a currently running thread (see Listing 14).
A copyinout table entry index for a specific function is a global variable initialized as part of the
SYSINIT() call. For example, the type foo with its generated functions has an associated vari-
able copyinout_foo_idx that can be used indirectly by the COPYIN_CALL() and COPYOUT_
CALL() macros to determine function addresses and make function calls (see Listing 15).

typedef int copyin_t(const void * __capability uaddr, void * __capability kaddr);
typedef int copyout_t(const void * __capability kaddr, void * __capability uaddr);

struct copyinout {
 copyin_t *ce_copyin;
 copyout_t *ce_copyout;
};

Listing 12. copyinout structure with type-specific copy function pointers.

6 of 11

20FreeBSD Journal • May/June 2021

struct sysentvec {
 (...)
 struct sysent *sv_table;
 (...)
 int (*sv_fetch_syscall_args)(struct thread *);
 (...)
 const struct copyinout *sv_copyinout;
}

Listing 13. sysentvec structure with the copyinout table.

#define THREAD_COPYINOUT(thread, type) \
 (thread)->td_proc->p_sysent->sv_copyinout[copyinout_##type##_idx]

#define COPYIN_FUN(type) \
 THREAD_COPYINOUT(curthread, type).ce_copyin
#define COPYIN_CALL(type, uaddr, kaddr) \
 ((int (*)(const void * __capability, \
 struct type * __capability))COPYIN_FUN(type)) \
 (uaddr, kaddr)

#define COPYOUT_FUN(type) \
 THREAD_COPYINOUT(curthread, type).ce_copyout
#define COPYOUT_CALL(type, kaddr, uaddr) \
 ((int (*)(const struct type * __capability, \
 void * __capability))COPYOUT_FUN(type)) \
 (kaddr, uaddr)

Listing 14. In-kernel macros for copyinout API calls.

#define copyin_foo(uaddr, kaddr) \
 COPYIN_CALL(foo, uaddr, kaddr)
#define copyout_foo(kaddr, uaddr) \
 COPYOUT_CALL(foo, kaddr, uaddr)

Listing 15. copyinout API function call macros for the type foo.

The main part of the copyinout framework is the code-generating tool written in C++
that uses the libclang library for code analysis. It traverses input Clang AST trees of header
files that include all type definitions for which copy functions should be generated and prints
prototypes, definitions or implementations of the copy functions (see Listing 16). The AST trees
can be generated with the following command:

clang -Xclang -ast-dump -fsyntax-only -c header-file

The copyinout framework includes a helper script that for an input base source tree gen-
erates AST trees, runs the copyinout tool and places generated functions in the base source
tree. This script could be added to the FreeBSD build system to automate code generation.

Currently, the function implementations can be generated in the C language for any archi-
tecture (generic) or in the assembly language for MIPS and CHERI-MIPS architectures. For

7 of 11

21FreeBSD Journal • May/June 2021

example, Listing 17 presents a copyin() function in the assembly language generated by the
copyinout tool for the type foo (see Listing 11) and the native ABI (a hybrid CheriBSD
kernel).

$./copyinout
usage: copyinout prototypes kernel-space-ast
 copyinout definitions native|freebsd32|cheri kernel-space-ast
 copyinout implementations native|freebsd32|cheri generic|mips user-space-ast
kernel-space-ast

Listing 16. copyinout tool usage.

struct foo { | LEAF(native_copyin_foo)
 | cgetbase t0 , $c3
 | blt t0, zero, _C_LABEL(copyerr)
 | nop
 | GET_CPU_PCPU(v1)
 | PTR_L t0, PC_CURPCB(v1)
 | PTR_LA t1 , copyerr
 |
 size_t len; | PTR_S t1, U_PCB_ONFAULT(t0)
 | cld v0, zero, 0($c3)
 | PTR_S zero, U_PCB_ONFAULT(t0)
 | csd v0, zero, 0($c4)
 |
 __uaddr_array(len) int * __capability array; | PTR_S t1, U_PCB_ONFAULT(t0)
 | cld v0, zero, 8($c3)
 | cfromptr $c5 , $ddc , v0
 | cld v0, zero, 0($c3)
 | li a0, 96
 | multu a0, v0
 | mflo v0
 | csetbounds $c5 , $c5 , v0
 | PTR_S zero, U_PCB_ONFAULT(t0)
 | csc $c5, zero, 16($c4)
 |
 | j ra
 | move v0, zero
} __copyinout; | END(native_copyin_foo)

Listing 17. copyin() function generated for the type foo and the native ABI (a hybrid CheriBSD kernel).

Memory Copying with the copyinout API
Having the copyinout framework, we can simplify system call structures and handlers.

For the previously discussed jail system call, we can replace the jail (see Listing 4) and
jail32 (see Listing 7) structures with a single one (see Listing 18). The jail system call for the
native ABI (see Listing 5) can be modified to use the type-aware copyin() function variant
copyin_jail() (see Listing 19). Since the copyin_jail() function is also ABI-independent
and can automatically translate a 32-bit ABI object to its native ABI version, we can also modi-
fy the jail system call handler for the 32-bit ABI (see Listing 8) to simply call the sys_jail()
function (see Listing 20).

8 of 11

22FreeBSD Journal • May/June 2021

struct jail {
 uint32_t version;
 __uaddr_str char * __capability path;
 __uaddr_str char * __capability hostname;
 __uaddr_str char * __capability jailname;
 uint32_t ip4s;
 uint32_t ip6s;
 __uaddr_array(ip4s) struct in_addr * __capability ip4;
 __uaddr_array(ip6s) struct in6_addr * __capability ip6;
} __copyinout;

Listing 18. jail structure with copyinout changes for all ABIs.

int
sys_jail(struct thread *td, struct jail_args *uap)
{
 (...)
 int error;
 struct jail j;

 (...)
 error = copyin_jail(uap->jail, &j);
 if (error)
 return (error);
 (...)
 return (kern_jail(td, &j));
}

Listing 19. jail system call handler with copyinout changes for the native ABI.

int
freebsd32_jail(struct thread *td, struct freebsd32_jail_args *uap)
{
 struct jail_args args;

 args.jailp = uap->jailp;

 return (sys_jail(td, &args));
}

Listing 20. jail system call handler with copyinout changes for the 32-bit ABI.

Conclusion
The initial implementation of the copyinout framework shows that copy-function gener-

ation can improve code quality in system call handlers and eliminate potential kernel memory
leaks in paddings. However, the code-generating tool must be improved to support more com-
plex data types and generate assembly copy function implementations for all supported plat-
forms. While work on the framework has been on hold for a while, we hope to resume it and
implement these improvements soon.

9 of 11

23FreeBSD Journal • May/June 2021

Future Work
Besides the basic functionality for the copyinout framework, there are several ideas on

how it can be improved or applied in the future:
• Assembly copy function implementation optimizations;

The current assembly implementations do not use any optimization techniques to mini-
mize the number of registers or cycles used during copying. For example, two half-word
adjacent fields could be loaded as one word with one load instruction and one register in-
stead of two load instructions.

• System call handlers reductions;
Compatibility layers implement many system call handlers that only translate objects be-
tween ABIs and not introduce any additional logic to their native ABI counterparts. Having
the copyinout API applied to them, the system call handlers seem to be redundant. For
example, the jail system call handler with copyinout changes for the 32-bit ABI (see List-
ing 20) only copies a pointer to a jail object from a jail system call arguments struc-
ture and calls the jail system call handler for the native ABI. It would be interesting to
apply the copyinout framework to system call argument structures as well and remove
such system call handlers from the compatibility layers.

• Cross-platform compatibility layers for emulators.
User-mode emulation in QEMU allows running programs for different architectures than
a host architecture without full system emulation. Each time a system call is encountered,
QEMU translates system call arguments from an emulated ABI version to a host user-space
ABI version, performs a system call on a host and translates a result to its emulated ABI ver-
sion. We could investigate if it is possible to implement a compatibility layer that includes
system call handlers for an emulated platform and using the copyinout framework can
copy and translate system call objects directly from or to an emulated user space.

References
[1] CTSRD. CheriBSD. FreeBSD adapted for CHERI-MIPS, CHERI-RISC-V, and Arm Morello.

https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheribsd.html.
[2] Konrad Witaszczyk. Capability-aware memory copying between address spaces. Universi-

ty of Copenhagen, 2019.
[3] The FreeBSD Project. FreeBSD-EN-18:12.mem. https://www.freebsd.org/security/adviso-

ries/FreeBSD-EN-18:12.mem.asc.
[4] The MITRE Corporation. CVE-2017-16994. https://cve.mitre.org/cgi-bin/cvename.

cgi?name =CVE-2017-16994.
[5] The MITRE Corporation. CVE-2010-4082. https://cve.mitre.org/cgi-bin/cvename.cgi?name

=CVE-2010-4082.
[6] Mateusz Jurczyk. Detecting Kernel Memory Disclosure with x86 Emulation and Taint

Tracking. https://googleprojectzero.blogspot.com/2018/06/detecting-kernel-memory-dis-
closure.html.

[7] Alexander Popov. Introduce the STACKLEAK feature and a test for it. https://lwn.net/Arti-
cles/735584/.

[8] Kees Cook. mm: Hardened usercopy. https://lwn.net/Articles/693745/.
[9] Thomas Barabosch, Maxime Villard. KLEAK: Practical Kernel Memory Disclosure Detec-

tion. https://www.netbsd.org/gallery/presentations/maxv/kleak.pdf.

10 of 11

24FreeBSD Journal • May/June 2021

[10] The FreeBSD Project. FreeBSD Architecture Handbook, Chapter 5. The SYSINIT Frame-
work. https://docs.freebsd.org/en/books/arch-handbook/sysinit/.

[11] Robert N. M. Watson, et al. Capability Hardware Enhanced RISC Instructions:
CHERI Instruction-Set Architecture (Version 8). Technical Report UCAM-CL-TR-951, Uni-
versity of Cambridge, Computer Laboratory, 2020.

[12] Robert N.M. Watson, et al. An Introduction to CHERI. Technical Report UCAM-CL- TR-
941, University of Cambridge, Computer Laboratory, 2019.

KONRAD WITASZCZYK is a Research Associate at the University of Cambridge working on
the CHERI project. He graduated with a BSc degree in Theoretical Computer Science from the
Jagiellonian University, an MSc degree in Computer Science from the University of Copenhagen
and spent almost 7 years at Fudo Security working with FreeBSD and its security-related tech-
nologies. Currently, Konrad lives in Warsaw, Poland.

11 of 11

Transport Layer Security, or TLS, makes ecommerce and online
banking possible. It protects your passwords and your privacy.
Let’s Encrypt transformed TLS from an expensive tool to a free
one. TLS understanding and debugging is an essential sysadmin
skill you must have.

TLS Mastery teaches what you must know.

Stop fighting with certificates and start using them. Give them
enough attention that you can automate and ignore them.

Learn TLS. Because we’re sysadmins and lies do not become us.

TLS Mastery by Michael W Lucas
https://mwl.io

“ ”
Security.
 You keep using that word.
 I do not think it means
 what you think it means.

