
14FreeBSD Journal • July/August 2021

The HID class consists primarily of devices that are used by humans to control the opera-
tionof computer systems. Typical examples of HID class devices include keyboards, point-
ing devices like standard mouse devices, trackballs, and joysticks. It was adopted primarily

to simplify the installation of such devices.
Prior to the appearance of the HID, devices usually conformed to strictly defined protocols.

All hardware design improvements resulted in either overloading the use of data in an existing
protocol or the creation of custom device drivers and the propagation of a new protocol to de-
velopers. By contrast, all HID-defined devices deliver self-describing packages that may contain
any number of data types and formats. The key idea is that information about a HID device is
stored in segments of its ROM (read-only memory). These segments are called descriptors. A
single HID driver on a computer parses descriptors and enables dynamic association of data
with application functionality, which has enabled rapid innovation and development, and prolif-
ic diversification of new human-interface devices.

Among descriptors of different types, there is one which any HID device must have inde-
pendently of physical transport. It is called a HID report descriptor. The report descriptor pre-
scribes each piece of data that the device generates and what the data is measuring. The sam-
ple of a report descriptor for a 3-button mouse with wheel and tilt follows:

BY VLADIMIR KONDRATYEV

1 of 7

Human Interface
Device (HID)
Support in
FreeBSD 13

15FreeBSD Journal • July/August 2021

0x05, 0x01, // Usage Page (Generic Desktop)
0x09, 0x02, // Usage (Mouse)
0xa1, 0x01, // Collection (Application)
0x09, 0x01, // Usage (Pointer)
0xa1, 0x00, // Collection (Physical)
0x05, 0x09, // Usage Page (Button)
0x19, 0x01, // Usage Minimum (1)
0x29, 0x03, // Usage Maximum (3)
0x15, 0x00, // Logical Minimum (0)
0x25, 0x01, // Logical Maximum (1)
0x95, 0x03, // Report Count (3)
0x75, 0x01, // Report Size (1)
0x81, 0x02, // Input (Data,Var,Abs)
0x95, 0x05, // Report Count (5)
0x81, 0x03, // Input (Const,Var,Abs)
0x05, 0x01, // Usage Page (Generic Desktop)
0x09, 0x30, // Usage (X)
0x09, 0x31, // Usage (Y)
0x09, 0x38, // Usage (Wheel)
0x15, 0x81, // Logical Minimum (-127)
0x25, 0x7f, // Logical Maximum (127)
0x75, 0x08, // Report Size (8)
0x95, 0x03, // Report Count (3)
0x81, 0x06, // Input (Data,Var,Rel)
0x05, 0x0c, // Usage Page (Consumer Devices)
0x0a, 0x38, 0x02, // Usage (AC Pan)
0x95, 0x01, // Report Count (1)
0x81, 0x06, // Input (Data,Var,Rel)
0xc0, // End Collection
0xc0, // End Collection

Listing 1. Decoded HID report descriptor for a 3-button mouse with wheel and tilt axes

The initial import of HID support from NetBSD was done in 1998 along with the USB
stack. It consisted of a report descriptor parser and 3 drivers based on it: ukbd(4), ums(4) and
uhid(4). A userspace version of a report descriptor parser known as libusbhid(3) was import-
ed later in 2000. It became a base of HID support in the bluetooth stack, bthidd(8), commit-
ted in 2004. While such a combination of drivers mostly suits desktop needs, it does not cope
well with laptops and hand-held devices. Microsoft published HID-over-I2C specifications which
were adopted by almost all (with Apple being the main exception) laptop producers. Touch de-
vices got a large market share and a lot of complex devices that combine the functionality of
two or more simpler devices appeared e.g., a keyboard with a mouse, or touch screen with a
pen tablet and so on. All this necessitated revision of the HID subsystem.

HID Subsystem Architecture
The new HID subsystem is designed as a bus. Any transport bus may provide HID devices

and register them with the HID core. The HID bus then loads generic device drivers on top of
it. The transport drivers are responsible for raw data transport and device setup/management.
The HID core contains helper routines for report-parsing and is responsible for auto discovery
of a child device for each Top Level Collection described by the report descriptor. Generic de-
vice drivers are responsible for report interpretation and the user-space API. Device specifics

2 of 7

16FreeBSD Journal • July/August 2021

and quirks are handled by hidquirk and raw access is handled by the hidraw driver. hidmap is
the HID item to the evdev event converter. Generic HID functionality is moved out of USB-HID
into a new subsystem under a dev/hid directory and became a separate kernel module. That is
something Open/NetBSD did 5 years ago.

Hardware-dependent +----------------------+
 | Transport bus |
 | iicbus(4), usbus(4) |
 +----------------------+
 |
 +----------------------+
 | HID transport driver |
 | iichid(4), usbhid(4) |
 +----------------------+
 |
Hardware-independent | hid_if.m – HID transport abstraction
 |
 +---+
 | HID Core |
 | +-----------------+ +-----------------+ |
 | | hidbus(4) | | hid(4) | |
 | | TLC management | | report parser | |
 | +-----------------+ +-----------------+ |
 +---+
 |
+---+
| HID Utilities |
| +-----------------+ +-----------------+ +-----------------+ |
| | hidraw(4) | | hidquirk(4) | | hidmap(4) | |
| | raw access | | | | HID->evdev 1:1 | |
| +-----------------+ +-----------------+ +-----------------+ |
+---+
 / \
 ______________/ ____________
 / / \ \
 +------------+ +-------------+ +------------+ +---------------+
 | hms(4) | | hkbd(4) | | hmt(4) | | custom driver |
 +------------+ +-------------+ +------------+ +---------------+

HID subsystem architecture.

HID Transport Drivers
A transport bus normally provides hotplug detection or device enumeration KPIs to the

transport drivers. Transport drivers use this to find any suitable HID device. They allocate HID
device resources and attach hidbus. Hidbus is never aware of which transport drivers are avail-
able and is not interested in it. It is only interested in child devices.

Transport drivers implement an abstract HID transport interface that provides independent
access to HID capabilities and functions through the device tree. A kobj-based HID interface can
be found in sys/dev/hid/hid_if.m. Once hidbus child is attached, the bus methods are used by
HID core to communicate with the device. Currently, the FreeBSD kernel includes support for
USB, and I2C drivers.

3 of 7

17FreeBSD Journal • July/August 2021

hidbus
hidbus is a driver that provides support for multiple HID driver attachments to a single HID

transport back-end. This ability existed in Net/OpenBSD from the day 0 (uhidev and ihidev driv-
ers) but has never been ported to FreeBSD. Unlike Net/OpenBSD we do not use report num-
ber alone to a distinct report source, but we follow the MS way and use a Top Level Collection
(TLC) usage to which the report belongs.

A TLC is a grouping of functionality that targets a particular software consumer (or type of
consumer) of the functionality. An operating system uses the Usage associated with this collec-
tion to link the device to its controlling application or driver. Common examples are a keyboard
or mouse. A keyboard with an integrated pointing device could contain two different appli-
cation collections. The HID device describes the purpose of each TLC to allow the consumers
of HID functionality to identify the TLC in which they might be interested. Hidbus generates
a child device for each TLC described by the Report Descriptor and adds PnP strings to allow
devd/devmatch to detect the proper driver. While running, hidbus broadcasts data generated
by transport drivers to all the children.

0x05, 0x01, // Usage Page (Generic Desktop Ctrls)
0x09, 0x06, // Usage (Keyboard)
0xA1, 0x01, // Collection (Application)
0x05, 0x07, // Usage Page (Kbrd/Keypad)
0x85, 0x01, // Report ID (1)
0x19, 0xE0, // Usage Minimum (0xE0)
0x29, 0xE7, // Usage Maximum (0xE7)
0x15, 0x00, // Logical Minimum (0)
0x25, 0x01, // Logical Maximum (1)
0x75, 0x01, // Report Size (1)
0x95, 0x08, // Report Count (8)
0x81, 0x02, // Input (Data,Var,Abs)
0x95, 0x01, // Report Count (1)
0x75, 0x08, // Report Size (8)
0x81, 0x01, // Input (Const,Array,Abs)
0x95, 0x06, // Report Count (6)
0x75, 0x08, // Report Size (8)
0x15, 0x00, // Logical Minimum (0)
0x26, 0xA4, 0x00, // Logical Maximum (164)
0x05, 0x07, // Usage Page (Kbrd/Keypad)
0x19, 0x00, // Usage Minimum (0x00)
0x29, 0xA4, // Usage Maximum (0xA4)
0x81, 0x00, // Input (Data,Array,Abs)
0xC0, // End Collection
0x05, 0x01, // Usage Page (Generic Desktop)
0x09, 0x02, // Usage (Mouse)
0xa1, 0x01, // Collection (Application)
0x09, 0x01, // Usage (Pointer)
0xa1, 0x00, // Collection (Physical)
0x85, 0x02, // Report ID (2)
0x05, 0x09, // Usage Page (Button)
0x19, 0x01, // Usage Minimum (1)
0x29, 0x03, // Usage Maximum (3)
0x15, 0x00, // Logical Minimum (0)
0x25, 0x01, // Logical Maximum (1)

4 of 7

18FreeBSD Journal • July/August 2021

0x95, 0x03, // Report Count (3)
0x75, 0x01, // Report Size (1)
0x81, 0x02, // Input (Data,Var,Abs)
0x95, 0x05, // Report Count (5)
0x81, 0x03, // Input (Const,Var,Abs)
0x05, 0x01, // Usage Page (Generic Desktop)
0x09, 0x30, // Usage (X)
0x09, 0x31, // Usage (Y)
0x15, 0x81, // Logical Minimum (-127)
0x25, 0x7f, // Logical Maximum (127)
0x75, 0x08, // Report Size (8)
0x95, 0x02, // Report Count (2)
0x81, 0x06, // Input (Data,Var,Rel)
0xc0, // End Collection
0xc0, // End Collection

Listing 2. HID report descriptor for keyboard with integrated mouse consisting of 2 TLCs.

hidmap
hidmap is a generic HID item value to an evdev event conversion engine that makes it pos-

sible to write HID drivers in a mostly declarative way by defining translation tables. The motiva-
tion behind its creation was that existing USB-HID drivers are overgrown in size due to follow-
ing factors:

•	USB transfer handling
•	Character device support code
•	Protocol conversion routines e.g. HID to sysmouse or HID to AT kbd set 1
•	Long hid_locate() and hid_get_data() chains in report parsers
p.1 is eliminated with help of the transport abstraction layer.
To solve p.2 support for legacy, the mouse interface was dropped. We use character device

handlers built in evdev.
To reduce the amount of code required by p.3 and p.4, hidmap was created. It is based

on the fact that HID and evdev are close relatives and we can directly map many HID usages
to evdev events. Listing 3 illustrates a sample mapping of HID usages to evdev events for the
mouse report from Listing 1.

 HID Usage mapped evdev event
 --------- ------------------
0x05, 0x09, // Usage Page (Button)
0x19, 0x01, // Usage Minimum (1) BTN_LEFT (BTN_MOUSE+0)
0x29, 0x08, // Usage Maximum (3) BTN_RIGHT (BTN_MOUSE+1)
0x95, 0x08, // Report Count (3) BTN_MIDDLE (BTN_MOUSE+2)
0x81, 0x02, // Input (Data,Var,Abs)
0x05, 0x01, // Usage Page (Generic Desktop)
0x09, 0x30, // Usage (X) REL_X
0x09, 0x31, // Usage (Y) REL_Y
0x09, 0x38, // Usage (Wheel) REL_WHEEL
0x95, 0x03, // Report Count (3)
0x81, 0x06, // Input (Data,Var,Rel)
0x05, 0x0c, // Usage Page (Consumer Devices)
0x0a, 0x38, 0x02, // Usage (AC Pan) REL_HWHEEL

5 of 7

19FreeBSD Journal • July/August 2021

0x95, 0x01, // Report Count (1)
0x81, 0x06, // Input (Data,Var,Rel)

Listing 3. Mapping of HID usages to evdev events for mouse report from Listing 1.

With help of hidmap, the mouse driver for such a device fits in a couple dozen lines of code.
See Listing 4.

/* my_mouse’s HID usage to evdev event mappings */
static const struct hidmap_item my_mouse_map[] = {
	 { HIDMAP_REL(HUP_GENERIC_DESKTOP, HUG_X,		 REL_X) },
	 { HIDMAP_REL(HUP_GENERIC_DESKTOP, HUG_Y,		 REL_Y) },
	 { HIDMAP_REL(HUP_GENERIC_DESKTOP, HUG_WHEEL,	 REL_WHEEL) },
	 { HIDMAP_REL(HUP_CONSUMER, HUC_AC_PAN,	REL_HWHEEL) },
	 { HIDMAP_KEY_RANGE(HUP_BUTTON, 1, 3,		 BTN_MOUSE) },
};

/* A match on these entries will load my_mouse */
static const struct hid_device_id my_mouse_devs[] = {
	 { HID_TLC(HUP_GENERIC_DESKTOP, HUG_MOUSE) },
};

static int
my_mouse_probe(device_t dev)
{
	 return (HIDMAP_PROBE(device_get_softc(dev), dev,
	 my_mouse_devs, my_mouse_map, “My mouse”));
}

static int
my_mouse_attach(device_t dev)
{
	 return (hidmap_attach(device_get_softc(dev)));
}

static int
my_mouse_detach(device_t dev)
{
	 return (hidmap_detach(device_get_softc(dev)));
}

Listing 4. Sample of hidmap-based driver for mouse report from Listing 1.

For example, the real FreeBSD mouse driver has shrunk from ~1200LOC in traditional ums(4)
to ~330 LOC in hms(4) based on new HID KPI. Also, it got I2C and absolute coordinate sup-
port missing in ums(4) and drift suppression code required to work around issues connected to
missing GPIO interrupt support in FreeBSD on x86. This simplicity allowed the author and Greg
V to create a bunch of hidmap-based drivers that are bundled with FreeBSD 13+, namely:

•	hms - HID mouse driver.
•	hcons - Consumer page AKA Multimedia keys driver.
•	hsctrl - System Controls page (Power/Sleep keys) driver.
•	hpen - Generic / MS Windows compatible HID pen tablet driver.
•	hgame - Game controller and joystick driver.

6 of 7

6 of 7

20FreeBSD Journal • July/August 2021

•	xb360gp - driver for Xbox360-compatible game controllers.
•	ps4dshock - Sony DualShock 4 gamepad driver.
There are also some drivers which are not based on hidmap like hkbd (4)and hmt(4). They

are ports of existing USB-HID drivers, namely ukbd(4) and wmt(4) to the new infrastructure.
They add support for I2C keyboards and I2C MT touchpads/touchscreens.

Other Modules
The HID subsystem contains two other modules that can be loaded optionally:
hidraw(4) - driver for raw access to HID devices resembling uhid(4). Unlike uhid(4), it allows

access to devices that were claimed by other drivers and supports both uhid and Linux hidraw
interfaces.

Hidquirk(4) - quirk module which was mostly copied from existing USB-HID.

Conclusion and Further Work
The FreeBSD HID subsystem is still under development but is already used by many. Recent

work added awaited support for widely used hardware like I2C touchpads and touchscreens,
multimedia keys on a USB keyboard, game controllers, absolute mice found on many VMs and
so on. This has led to improved user experience in areas where we lagged behind other OS-es
including other BSDs. But there are lot of things still left in TODO list e.g:

•	Implement usrhid, a user-space transport driver that can create kernel hid-devices for each
device connected to the user-space controlled bus. Existing Linux uhid protocol can be used
as a starting point. It defines an API for providing I/O events from the kernel to user-space
and vice versa.

•	Convert bthidd(8) to use usrhid to consolidate HID support between the kernel and user
spaces.

•	Complete evdev-awared WIP moused https://github.com/wulf7/moused and replace our
in-base moused(8) with it. This is required as new hms and hmt drivers do not support our
legacy sys/mouse.h interface.

•	Enable usbhid(4) by default and start deprecation of ums(4), ukbd(4) and other legacy
USB-HID drivers along with deprecation of all mouse(4)/sysmouse(4) stuff in the kernel and
base system

VLADIMIR KONDRATYEV is an ex-FreeBSD system administrator and currently a core bank-
ing system specialist. He has been a FreeBSD committer since 2017 and a FreeBSD desktop user
for the last ~20 years. In his spare time, he tries to improve the desktop experience, contribut-
ing mostly to input device drivers.

