
29FreeBSD Journal • September/October 2021

Aquestion that I frequently see is something along the lines of, “How do I get started in
operating system kernel development?” This is difficult to answer in general, but there
is a simpler side to the question, which is, “How can I set myself up to (efficiently) build

and test kernel changes?” In other words, while submitting one’s first kernel patch is a signif-
icant milestone, a frequent contributor may be working on multiple different patches, testing
patches (possibly obtained from other developers), bisecting to find the cause of a regression,
or debugging a kernel panic. It is important to have a workflow that minimizes the amount of
time spent waiting or fiddling with configuration knobs or shell scripts.

FreeBSD, being a large and rather long-lived project (even older than some of its developers)
and targeting a variety of hardware platforms (from palm-sized SoCs to large multi-core serv-
ers with terabytes of RAM), does not have a one-size-fits-all approach to these kinds of tasks.
However, the benefits of a fast edit-compile-test loop are universal; this article seeks to illustrate
a few tricks which can reduce the friction of many kernel development tasks.

The steps below assume a FreeBSD host and POSIX-compatible shell, such as /bin/sh.
While the project currently does not provide much in the way of canned scripts for building,
booting and testing kernel changes, some of the suggestions here can be incorporated into
one’s development environment or into a CI system shared by multiple developers.

Git Worktrees
Before starting any kind of work on FreeBSD one needs a copy of the src repository:

$ git clone https://git.freebsd.org/src.git freebsd

When working on multiple tasks, it will be useful to have multiple copies of the FreeBSD
source files. Having a single copy becomes awkward if a build of the currently checked out
branch is running and while waiting you want to switch to a different branch to work on some-
thing else, or possibly because switching branches would update timestamps on source files
and thus unnecessarily slow down future incremental builds.

It is of course possible to keep multiple clones of a repository, but a better solution is to use
git worktrees, which let one checkout multiple branches from a single clone. This requires less

BY MARK JOHNSTON

1 of 7

Kernel Development
Recipes

30FreeBSD Journal • September/October 2021

disk space and ensures that all of your work is contained in a single copy of the repository. For
example, it can be useful to have worktrees for frequently accessed stable and release branches:

$ cd freebsd
$ git worktree add dev/stable/13 origin/stable/13
$ git worktree add dev/releng/13.0 origin/releng/13.0
$ git worktree add dev/stable/12 origin/stable/12
$ git worktree add dev/releng/12.2 origin/releng/12.2
...

Note that worktrees may be located outside of the clone, for example:

$ git worktree add ../freebsd-stable/13 origin/stable/13

When working on a larger project, it is useful to keep a worktree dedicated to that branch.

Building and Booting a Custom Kernel — Quickly
Suppose that you have written a small, simple kernel patch and want to do some sanity

testing before submitting it for review. The standard command for building a FreeBSD kernel is
well-known:

$ cd freebsd
$ make buildkernel

This will perform a clean, single-threaded kernel build. It is usually preferable to use as much
CPU as is available, so consider adding -j $(sysctl -n hw.ncpu) to the make(1)flags: this
will run as many build jobs in parallel as there are CPUs in the system. Once a kernel has been
built from a particular source path, it is not usually necessary to rebuild every single source file
each time a change needs to be tested — an incremental rebuild is sufficient. To request an in-
cremental build, add the -DKERNFAST flag to the make(1) invocation:

$ make -j $(sysctl -n hw.ncpu) -DKERNFAST buildkernel

By default, a buildkernel will rebuild not only the kernel, but also every single kernel mod-
ule that comes with it, which on an amd64 system running a GENERIC kernel comes out to
822 modules. Many of these modules are also linked into the kernel proper (depending on the
kernel configuration file in use), so a buildkernel may spend considerable time rebuilding
modules that will never be loaded. The MODULES_OVERRIDE variable can be used to override
this behaviour; instead of building a kernel and all modules, a buildkernel with MODULES_
OVERRIDE will build only a kernel and the modules specified by the variable’s value. For exam-
ple, to build a kernel together with only the tmpfs.ko and nullfs.ko modules, run the follow-
ing:

$ make -j $(sysctl -n hw.ncpu) -DKERNFAST \
 MODULES_OVERRIDE=”tmpfs nullfs” buildkernel

2 of 7

31FreeBSD Journal • September/October 2021

If you know that your testing requires only a handful of modules, your build times can ben-
efit from setting MODULES_OVERRIDE since this may greatly reduce the number of filesystem
accesses performed during a build. If the source tree is located on a slow disk, or remotely and
accessed over NFS, for example, the MODULES_OVERRIDE option may save a lot of time.

Now that a test kernel is available, it can be tested. The procedure for testing a change de-
pends heavily on the nature of the change; a developer working on a WiFi driver will have dif-
ferent testing workflows than a developer working on bringing up FreeBSD on a new platform
or on the kernel memory allocator. For many purposes, however, a simple bhyve virtual ma-
chine (VM) is sufficient.

The FreeBSD project provides VM images that are handy for use in testing kernel changes.
While it is of course possible to build VM images locally, using the release(7) scripts for exam-
ple, the pre-built images are quite convenient:

$ IMAGE=”FreeBSD-14.0-CURRENT-amd64.raw.xz”
$ URL=”https://ftp.freebsd.org/pub/FreeBSD/snapshots/VM-IMAGES/14.0-CURRENT/amd64/Latest”
$ fetch -o “/tmp/${IMAGE}” “${URL}/${IMAGE}”
$ unxz “/tmp/${IMAGE}”
$ sudo pkg install -y bhyve-firmware
$ sudo sh /usr/share/examples/bhyve/vmrun.sh -E -d \
 “/tmp/${IMAGE%.xz}” myvm

This boots up the snapshot image using bhyve, in a VM called “myvm”. However, the VM
will be running the kernel included with the snapshot. There are several ways to update the im-
age’s kernel. For instance, a copy of the source tree could be copied or mounted into the boot-
ed VM, and a new kernel can be built within the VM. However, this will be slow unless the VM
is given a large amount of CPU and RAM, and poses the logistical problem of exporting the
source tree. Another approach could be to mount the disk image on the host and install a new
kernel directly, but this requires some synchronization to ensure that the VM and the host do
not have the image mounted at the same time.

A different approach is to provide a second disk containing only the custom kernel and
modules, and configuring the VM to boot from that instead. Such disk images can be created
quickly and without any special privileges on the host. First, the following commands can be
used to create such an image:

$ cd /usr/src
$ make buildkernel
$ make installkernel -DNO_ROOT DESTDIR=/tmp/kernel
$ cd /tmp/kernel
$ makefs -B little -S 512 -Z -o version=2 /tmp/kernfs METALOG
$ rm -f /tmp/kernfs.raw
$ mkimg -s gpt -f raw -S 512 -p freebsd-ufs/kern:=/tmp/kernfs \
 -o /tmp/kernfs.raw

The make commands build and install a kernel to /tmp/kernel without requiring root priv-
ileges. This also creates an mtree(8) manifest in /tmp/kernel/METALOG which is used by

3 of 7

32FreeBSD Journal • September/October 2021

makefs(8) to build a small filesystem. Finally, mkimg(1) adds a GPT to the filesystem, making it
accessible to the FreeBSD boot loader.

Now we can boot the VM again with the extra disk:

$ sudo sh /usr/share/examples/bhyve/vmrun.sh -E -d /tmp/kernfs.raw \
 -d “${IMAGE%.xz}” myvm

This still boots the kernel from the original image. However, the boot loader can be config-
ured to load the kernel from kernfs.raw instead, by adding the following line to /boot/load-
er.conf:

kernel=”disk0p1:/boot/kernel”

“disk0p1” here refers to the first partition of disk0, the first disk listed in the vmrun.sh
command-line arguments, which in this case is /tmp/kernfs.raw. After making this
change and rebooting, the VM should boot into the custom kernel.

The custom kernel filesystem is not mounted by default, which means that
tools like kldload(8) will not be able to automatically load kernel modules
corresponding to the custom kernel. To remedy this, add the following lines to the
corresponding system configuration files:

/boot/loader.conf:

Make sure that nullfs is available.
nullfs_load=”YES”

/etc/sysctl.conf:

Fix up paths used by the kernel linker.
kern.bootfile=/boot/kernel/kernel
kern.module_path=/boot/kernel

/etc/fstab:

Mount the custom kernel filesystem at /boot/kernel.
/dev/gpt/kern /mnt ufs ro 0 0
/mnt/boot/kernel /boot/kernel nullfs ro 0 0

Finally, consider adding autoboot_delay=1 to /boot/loader.conf: this reduces the loader
delay from ten seconds to one, which helps considerably when reboots are frequent.

While the setup was a bit involved, it only needs to be performed once, and we now have
a way to quickly boot up a freshly built kernel! Kernel builds can be done while the VM is run-
ning, and rebooting the VM will cause the latest kernel build to be loaded and run. When cre-
ating more elaborate testing environments, it may be desirable to build the base VM image lo-
cally as well, in which case the configuration updates described above may be automated.

4 of 7

33FreeBSD Journal • September/October 2021

Debugging a Custom Kernel
One benefit of using bhyve(8) is the GDB protocol stub available to the host. QEMU has a

similar feature. Using this, the host system can run a debugger on the guest kernel. Since our
custom kernel was built on the host, this functionality is trivial to use. The vmrun.sh currently
does not support enabling the GDB stub, but it can be enabled using a raw bhvye(8) invocation:

bhyve -c 1 -m 512M -H -A -P -G :1234 \
 -s 0:0,hostbridge \
 -s 1:0,lpc \
 -s 2:0,virtio-blk,kernfs.raw \
 -s 3:0,virtio-blk,FreeBSD-14.0-CUREENT-amd64.raw \
 -l com1,stdio \
 -l bootrom,/usr/local/share/uefi-firmware/BHYVE_UEFI.fd \
 myvm

Here, the -G :1234 parameter instructs bhyve(8) to listen on port 1234 for connections
from a debugger. When booting a VM, bhyve(8) may optionally pause waiting for a connec-
tion before booting the kernel; this is handy for debugging problems that arise early during ker-
nel boot-up. To enable this, specify -G w:1234.

While the VM is running (or waiting for a connection), the kgdb program (installed with the
gdb package) can attach to the guest using port 1234:

$ kgdb -q /tmp/kernel/usr/lib/debug/boot/kernel/kernel.debug
Reading symbols from /tmp/kernel/usr/lib/debug/boot/kernel/kernel.debug...
(kgdb) target remote localhost:1234
Remote debugging using localhost:1234
cpu_idle_acpi (sbt=432162053) at
/usr/home/markj/src/freebsd/sys/x86/x86/cpu_machdep.c:551
551 atomic_store_int(state, STATE_RUNNING);
(kgdb) set solib-search-path /tmp/kernel/usr/lib/debug/boot/kernel
Reading symbols from
/tmp/kernel/usr/lib/debug/boot/kernel/nullfs.ko.debug...
(kgdb) bt
#0 cpu_idle_acpi (sbt=432162053) at
/usr/home/markj/src/freebsd/sys/x86/x86/cpu_machdep.c:551
#1 0xffffffff81096ccf in cpu_idle (busy=0) at
/usr/home/markj/src/freebsd/sys/x86/x86/cpu_machdep.c:668
#2 0xffffffff80c62b41 in sched_idletd (dummy=<optimized out>,
dummy@entry=0x0 <nullfs_init>)
 at /usr/home/markj/src/freebsd/sys/kern/sched_ule.c:2952
#3 0xffffffff80be838a in fork_exit (callout=0xffffffff80c62660
<sched_idletd>, arg=0x0 <nullfs_init>,
 frame=0xfffffe0001141f40) at
/usr/home/markj/src/freebsd/sys/kern/kern_fork.c:1088
#4 <signal handler called>
(kgdb)

At this point the VM is suspended waiting for a command from the debugger. The continue
command can be used to resume the VM, and hitting ctrl-C in the debugger window will suspend

5 of 7

34FreeBSD Journal • September/October 2021

the VM again. This functionality is extremely useful for debugging kernel deadlocks and boot-time
problems. It is also possible to attach a debugger after the guest kernel has panicked, making it
easy to inspect threads and local variables without having to configure and recover kernel dumps.

Testing a Custom Kernel
We now have a fairly quick loop for incrementally testing changes to the FreeBSD kernel, as

well as some tooling for debugging problems when they arise. At this point some manual test-
ing might indicate that the patch is correct and ready for review. It may be useful though to run
some automated tests to increase confidence in the patch; the FreeBSD kernel is a large, mono-
lithic body of code, and there is always some potential for unforeseen regressions. A good
place to start is the FreeBSD regression test suite.

If you followed the steps above to set up a kernel development VM, then the test suite is al-
ready installed; use the following commands to run it:

cd /usr/tests
kyua -v test_suites.FreeBSD.allow_sysctl_side_effects=1 test

The allow_sysctl_side_effects flag enables tests which depend on being able to modify
global sysctl values, which is perfectly fine in a dedicated VM. Some tests will also be skipped if
they depend on third-party ports, such as Python. After a run, a summary of results (including
skipped tests) can be viewed with:

kyua report

A bhyve VM can be set up to automatically run the test suite upon booting up. One simple
way to achieve this is to add an /etc/rc.local script which runs the test suite, prints results
to the console, and shuts down the VM. A separate disk could be used to store the output of
kyua report, making the results easy to recover on the host.

The regression test suite covers a large number of FreeBSD features but is designed to com-
plete quickly. So while it can help find bugs with relatively little effort, more intensive stress
tests may be required. FreeBSD has several ways to further test kernel changes.

stress2
stress2 is a large stress test suite maintained by Peter Holm. It contains many hundreds

of regression tests for the core kernel’s filesystem and memory management subsystems. The
stress2 suite is included in the FreeBSD source tree, in tools/test/stress2, but is not part of
an installation. To run the tests, assuming a source tree is available in the test system, run:

cp -R ${SRCDIR}/tools/test/stress2 /tmp/stress2
pw user add stress2
cd /tmp/stress2
echo stress2 | make test

The stress2 suite requires at least several gigabytes of RAM and a large disk. It can take
multiple days to complete but is an excellent way to test systemic changes to the kernel. The in-
dividual tests are located under the misc subdirectory and can be run directly.

6 of 7

35FreeBSD Journal • September/October 2021

syzkaller
Finally, syzkaller has emerged as an effective tool for exercising portions of the kernel

reachable from the system call interface. Being a fuzzer, it is not particularly useful for proving
the correctness of a change, but it is very good at triggering rarely executed error paths and so
can help validate error handling code which may otherwise be difficult to trigger. It is also ef-
fective at provoking race conditions.

A detailed overview of syzkaller appeared in a previous FreeBSD Journal article. Setting
up a syzkaller instance is a somewhat involved task. Documentation is available in the syz-
kaller repository for setting up a FreeBSD host to run syzkaller (which performs fuzzing us-
ing QEMU or bhyve VMs).

An alternative approach which automates many of the setup steps makes use of Bastille
templates. Bastille is a system for deploying and managing jails on FreeBSD; Bastille templates
allow one to run code and modify configuration in a running jail. A Bastille template for run-
ning syzkaller is available. To use it, first install Bastille and create a thin, VNET-based jail
based on FreeBSD 13.0:

pkg install bastille
bastille bootstrap 13.0-RELEASE
bastille bootstrap https://github.com/markjdb/bastille-syzkaller
bastille create -V syzkaller 13.0-RELEASE 0.0.0.0 epair0b

This assumes that epair0b is Bastille’s “uplink” interface; it can be bridged with a host inter-
face to provide full network access.

Then, follow the setup steps documented in the bastille-syzkaller template’s README to cre-
ate a ZFS dataset for syzkaller and enable the required capabilities in the syzkaller jail. Finally,
the template can be applied, and syzkaller started, with:

bastille template syzkaller markjdb/bastille-syzkaller \
 --arg FREEBSD_HOST_SRC_PATH=${SRCDIR}
bastille service syzkaller syz-manager onestart

Typically ${SRCDIR} would be a git worktree referencing the branch to be built and tested;
this worktree is nullfs-mounted into the jail. The kernel fuzzed by syzkaller can be rebuilt
using the build.sh script installed by the template in the jail root user’s home directory:

bastille console syzkaller
service syz-manager onestop
sh /root/build.sh
service syz-manager onestart

At this point, syzkaller starts a web server listening on port 8080, displaying crash reports
and the progress of the fuzzing processes.

MARK JOHNSTON has been a FreeBSD user since 2010 and a committer since 2013. He cur-
rently works for the FreeBSD Foundation, where he spends time on improving the stability and
performance of the kernel, and on providing code reviews.

7 of 7

https://freebsdfoundation.org/wp-content/uploads/2021/01/Kernel-Fuzzing.pdf
https://github.com/google/syzkaller/tree/master/docs/freebsd#readme
https://github.com/google/syzkaller/tree/master/docs/freebsd#readme
https://bastillebsd.org
https://github.com/markjdb/bastille-syzkaller
https://github.com/markjdb/bastille-syzkaller/blob/master/README

