
September/October 2021

FreeBSD Code Review
with git-arc

How to Implement a Simple
USB Driver for FreeBSD

Kernel Development Recipes

Practical Ports

Programmers Programming
Potpourri

LETTER
from the Foundation

Justin Gibbs • Founder of the FreeBSD Foundation,
President of the FreeBSD Foundation,
and a Software Engineer at Facebook.

Daichi Goto • Director at BSD Consulting Inc.
(Tokyo).

Dru Lavigne • Author of BSD Hacks and
The Best of FreeBSD Basics.

Michael W Lucas Author of more than 40 books including
Absolute FreeBSD, the FreeBSD
Mastery series, and git commit murder.

•

Kirk McKusick • Treasurer of the FreeBSD Foundation
Board, and lead author of The Design
and Implementation book series.

Hiroki Sato • Director of the FreeBSD
Foundation Board, Chair of Asia
BSDCon, Member of the FreeBSD
Core Team, and Assistant
Professor at Tokyo Institute of
Technology.

Robert N. M. Watson • Director of the FreeBSD Foundation
Board, Founder of the TrustedBSD
Project, and University Senior Lecturer
at the University of Cambridge.

Advisory Board
Anne Dickison • Marketing Director, FreeBSD Foundation

John Baldwin • FreeBSD Developer and Chair of
FreeBSD Journal Editorial Board.

Tom Jones • FreeBSD Developer, Internet Engineer
and Researcher at the University of
Aberdeen.

Allan Jude • CTO at Klara Inc., the global FreeBSD
Professional Services and Support
company.

George Neville-Neil • Past President of the FreeBSD Foundation,
member of the FreeBSD Core Team,
and co-author of The Design and
Implementation of the FreeBSD
Operating System.

Ed Maste • Senior Director of Technology,
FreeBSD Foundation and Member
of the FreeBSD Core Team.

Benedict Reuschling • Vice President of the FreeBSD Foundation
Board and a FreeBSD Documentation
Committer.

Mariusz Zaborski • FreeBSD Developer, Manager at
Fudo Security.

FreeBSD Journal (ISBN: 978-0-615-88479-0) is published 6 times
a year (January/February, March/April, May/June, July/August,

September/October, November/December).
Published by the FreeBSD Foundation,

3980 Broadway St. STE #103-107, Boulder, CO 80304
ph: 720/207-5142 • fax: 720/222-2350
email: info@freebsdfoundation.org

Copyright © 2021 by FreeBSD Foundation. All rights reserved. This magazine may not be
reproduced in whole or in part without written permission from the publisher.

Publisher •
Editor-at-Large •

Design & Production •
Advertising Sales •

Walter Andrzejewski
walter@freebsdjournal.com

James Maurer
jmaurer@freebsdjournal.com

Reuter & Associates

Walter Andrzejewski
walter@freebsdjournal.com
Call 888/290-9469

J O U R N A L
®

S&W PUBLISHING LLC

Editorial Board

PO BOX 3757 CHAPEL HILL, NC 27515-3757

3FreeBSD Journal • September/October 2021

Welcome to the September/October issue of the
FreeBSD Journal. The fall season means a lot

of things to the Foundation team. Beautiful weather in
Boulder, CO where the Foundation is headquartered,
end of year planning, and of course, kicking off our Fall
Fundraising campaign. So far, the responses I’m hear-
ing are extremely positive, and I’m hopeful that we will
reach our fundraising goal this year.

As of this writing, we’ve raised $200,000 towards
our $1,250,000 goal for 2021. Why do we need so
much money? Well, last year we decided to make
more significant software contributions to FreeBSD.
In order to do that, we had to grow our team. We
developed a technology roadmap from input we
were receiving from individual and commercial users
as well as market trends. Based on the roadmap, we
identified positions we needed to fill.

This year we’ve hired three full-time software de-
velopers, one full-time Arm kernel developer, and
one project manager. We also are funding wifi
work full-time and some other projects to help with
FreeBSD on the desktop. We are doing this to help
attract new users and contributors to the Project.
More on those projects can be found in the upcom-
ing FreeBSD Project Q3 Status Report.

 Our growth wasn’t just in our technology team,
but in our advocacy team too. We hired a marketing
coordinator and technical writer to provide more ed-
ucational and informational content.

We also continue to fund this very journal, mak-
ing it free to everyone. We feel the FreeBSD Journal is
an important piece of our advocacy puzzle. The cur-
rent issue focuses on FreeBSD Development and in-
cludes articles on FreeBSD Code Review with git-arc,
FreeBSD Development Recipes, and more. We hope
you enjoy these articles and share them with your
friends and colleagues.

Finally, as we continue our Fall Fundraising cam-
paign, please remember that the Foundation is
100% funded by donations. I know we say it a lot,
but we truly can’t do it without you. Please consider
making a donation to help us continue and increase
our support for FreeBSD.

Happy Reading!
Deb Goodkin
FreeBSD Foundation Executive Director

https://freebsdfoundation.org/blog/technology-roadmap/
https://www.FreeBSDfoundation.org/donate/

September/October 2021

 3 Foundation Letter
By Anne Dickison

 5 We Get Letters
by Michael W Lucas

 36 Practical Ports
Programmers Programming Potpourri
By Benedict Reuschling

 41 Events Calendar
By Anne Dickison

 8 FreeBSD Code Review
with git-arc
By John Baldwin

 14 How to Implement a Simple
USB Driver for FreeBSD
By Mariusz Zaborski

 29 Kernel Development Recipes
By Mark Johnston

FreeBSD Development

Plus

4FreeBSD Journal • September/October 2021

Greetings and felicitations,
oh mighty Letters Column Master!

Now that I’ve gotten the obligatory “sucking up
so you’ll pay attention” out of the way, I’ll ask:
are you crazy? You’re supposed to be answering
people’s sincere and heartfelt letters, and instead
you tell them that they’re doomed for even asking.
This is an issue dedicated to development, and
I bet anything you’re going to spend your pages
slagging on developers.

How dare you, sir? How dare you?

 —Not A Fan

Dearest NAF,
I have absolutely nothing against developers. Most—er, many of them are lovely human be-

ings. I simply wish that they had dedicated their lives to something that might improve civiliza-
tion, like volunteering to pick up trash by the roadside.

My problem is with code, not coders.
We treat computer code like a precious treasure worthy of hoarding, when in reality it’s like

nuclear waste with a few rubies scattered in it. While every line that emerged from the CSRG
is unalloyed platinum, most code repositories contain a whole bunch of barely functional spew
supporting occasional scintillating scraps of brilliance. Some of those luminous lines are shackled
into supporting the great threats dooming our civilization, like Facebook.

Yes, the world—really the Internet, but if you’re a developer isn’t the Internet your entire
world?—is bloated with documentation on how to write better code, but none of it agrees with
one other and most of you can’t be bothered to read the instructions anyway. No, don’t argue. I
write that documentation; I have nearly unholy knowledge of how many of you read the stuff.

If you want to be a developer and yet improve civilization, use your hard-won acumen to-
wards reducing the amount of code the world uses.

Every line of code is a seed of technical debt waiting for an opportunity to sprout into a ma-
lignant blossom, and every program is a farm of their horrific sprouts. Every package you install
begins suffering from neglect the instant you log out, which is why some of you have terminal
sessions that have been open for six years and think it’s okay because the server is behind the
firewall, and we’re all doomed anyway. Computer people always think that there’s a technical
solution when the only solution is to shut off the laptop and hang out in meatspace for a life-
time or two.

1 of 3

5FreeBSD Journal • September/October 2021

by Michael W Lucas

freebsdjournal.org

Very few developers spend their careers writing clean, new, perfect implementations. The uni-
versity churns out these bright-eyed maniacs who think that they’ll be writing IP routers in Java
just like their senior project demanded, then they get a job where they’re tipped face-first into
the nuclear waste vat and told to make it not radioactive. They spend aeons fixing bugs caused
by other people’s insufficient grasp of how their code works, until they achieve enough seniority
that they’re allowed to write their own bugs.

It’s enough to make someone clean-field write a nearly useless program in the hope of
demonstrating what good software should look like and post it on Github, just to prove that
they exist. Or that they used to exist. Did you know Github has a feature to set the heir to your
code? That horrible program you wrote for your own satisfaction, but other people discovered
and filed bugs against until it took over your life and finally made you stroke out? Before you re-
tire and start choosing which brand of dollar store cat food you’ll be dining on for your twilight
years, be sure to choose your code’s next victim. If you pick me, I’ll immediately auction off all
rights to the least savory bidder and exploit the proceeds to soil your legacy.

The most heroic developers are those who delete code.
So much code hasn’t been touched in decades because it seems to work, when the reality is

it’s failed in ways nobody has noticed yet. Study it. Should it be ripped out because it’s old? Cer-
tainly not! It should be ripped out only if and when there’s a more maintained method of doing
the same thing.

Probably a library. One of my least loathed “innovations” of the last couple decades is
FreeBSD’s libarchive.

Unix has too many formats for compressing and collating data because most of them were
invented on and for Unix. Does anyone with less than a decade of experience understand when
to use compress(1) versus Microsoft CAB archives? No, because nobody with any amount of ex-
perience remembers that except for a few hard-core archive format specialists. What about the
hydra-headed tar format? Eliminate one tar format, and two more grow to take its place. Worse,
each of those new tar formats are optimized for increasingly particular use cases.

Every archiving program supported its own format. Many of them had marginal support for
other formats. When I started as a sysadmin I could use tar(1) to unzip archives, except when the
zip format was really compressed and some Idiot (me, I’m Idiot) slapped the wrong extension on
the filename.

Libarchive provided a single central source of compression and archiving truth. Programs that
relied on libarchive could work with any file format. Bugs discovered and fixed in libarchive in-
stantly propagated to every program that linked it.

The real benefit of libarchive was that it reduced the amount of code in use.
Instead of dozens of programs sketchily implementing their own so-called support of whatev-

er formats they preferred, these programs discarded their own engines and pulled in libarchive.
This library might have tens of thousands of lines of code, but using it removed hundreds of
thousands of lines of code. Plus, it let sysadmins use their preferred archiving tool to open any-
thing. Early in my career, I learned to be comfortable using tar(1) in the some way certain circus
performers are comfortable slipping a tractor/trailer tow chain up their nose and out their ear.
Today, I use tar to open those pesky CAB files that are such a burden on sysadmins.

Meanwhile, GNU tar still relies on file extensions.
I don’t know how Linux people cope. Maybe that’s why they so fiercely cuddle their penguins.
Can libraries be taken too far? No. Only vision can fail. Why, one night at BSDCan a few

FreeBSD developers who’d had more liquor than sleep had the spark of genius to implement and

2 of 3

6FreeBSD Journal • September/October 2021

publish libtrue, a back-end to the true(1) program that could be linked into any program. Sadly,
the world failed to pick up on this magnificent innovation and libtrue remains underadopted.

If you want to be a developer and make the world better, study your nuclear waste with an
eye towards reducing it. Does it have ancient functions that can now be served by a well-main-
tained—mostly maintained—er, maintained at all, in any way—library? Are there common fea-
tures that should be in a library?

How can you reduce the amount of code in the world?
Because code is unquestionably poison. Just look at what it’s done to you, making you ques-

tion my ethics when it’s obvious I don’t care.

Have a question for Michael?
Send it to letters@freebsdjournal.org

MICHAEL W LUCAS is the author of TLS Mastery, Absolute FreeBSD, and the $ git commit mur-
der series. His DNSSEC Mastery and Domesticate Your Badgers should be out first thing in 2022,
and it’s far too late for you to stop him. Submit your questions to letters@freebsdjournal.org.

3 of 3

all the storage; we use ZFS to replicate the data between cluster nodes; we use
compression and snapshots. And we heavily use Capsicum to make it all secure.

We want to be sure that even if someone breaks into a single session, he can-
not access other sessions. He cannot actually access anything, because if he
breaks in before authentication, he won't be granted access to connect to the
server. Only after successful authentication will we provide a connection to the
destination server.

And Capsicum makes it really clean and very efficient actually.
Al lan: You don't have to enumerate all the things you can't do. You're saying
you're only allowed to do these things?

• Pawel: Yes. This is capability ideology. You only grant the exact rights or access
to resources that the process requires. Which is not UNIX ideology because, of
course, if you are running a UNIX program, it has access to everything.
Al lan: Was there anything else you wanted to talk about?

• Pawel: Not really. •

Sept/Oct 2019 23

FreeBSD is internationally recognized as an innovative
leader in providing a high-performance, secure, and stable
operating system.
Not only is FreeBSD easy to install, but it runs a huge number

full source code.

The FreeBSD Community is proudly supported by

T

Help Create the Future.
Join the FreeBSD Project!

The FreeBSD Project is looking for

Find out more by

Checking out our website

Downloading the Software

for people like you to help continue
developing this robust operating system.
Join us!

Already involved?

Don�t forget to check out the latest
grant opportunities at
freebsdfoundation.org

7FreeBSD Journal • September/October 2021

freebsdjournal.org

8FreeBSD Journal • September/October 2021

The FreeBSD Project uses the Phabricator Differential application as a tool for code review at
https://reviews.freebsd.org. Phabricator itself provides several applications to support software
development, but the FreeBSD Project only uses the code review tool. Users and developers
can upload changes for review either by pasting diffs directly into the web application, or by
using the arc command line tool (available via the devel/arcanist package or port). arc can up-
load commits from a git branch from the command line and can also modify commit logs of
reviewed commits to prepare them for pushing to the public repository.

However, arc has a few limitations that make it awkward to use for FreeBSD development:
• Arcanist uses its own commit log template whose format does not match FreeBSD’s exist-
ing template and is not easily changed.

• Arcanist presumes a model where all the commits in a development branch are uploaded
for review as a single Differential revision. When working on a feature branch with multiple
commits, it is usually more efficient to review each commit individually.

While these limitations can be worked around (for example, individual commits can be up-
loaded as separate reviews by careful use of the --head option), the work arounds are tedious.

The git-arc tool provides a wrapper around arc that mostly mitigates those limitations. git-
arc is a plugin for git which adds commands to work with Phabricator.

Installing git-arc
git-arc lives in the FreeBSD source repository at tools/tools/git. The script and its man-

page can be installed by running make install from that directory. Note that git-arc is installed
to /usr/local/bin by default.

> git clone https://git.freebsd.org/src.gitgit clone https://git.freebsd.org/src.git
...
> cd src/tools/tools/gitcd src/tools/tools/git
> makemake
gzip -cn /usr/home/john/work/freebsd/main/tools/tools/git/git-arc.1 >
git-arc.1.gz
> make installmake install
install -o root -g wheel -m 555
/usr/home/john/work/freebsd/main/tools/tools/git/git-arc.sh
/usr/local/bin/git-arc
install -o root -g wheel -m 444 git-arc.1.gz /usr/share/man/man1/

BY JOHN BALDWIN

1 of 6

FreeBSD Code Review
with git-arc

https://reviews.freebsd.org
https://www.freshports.org/devel/arcanist

9FreeBSD Journal • September/October 2021

In addition, git-arc requires the following packages to be installed: arcanist (devel/arcanist),
git (devel/git), and jq (textproc/jq).

Since git-arc is a wrapper around arcanist, arcanist must also be initialized. First, create an ac-
count at https://reviews.freebsd.org. Second, install an API token for arcanist:

> arc install-certificate https://reviews.freebsd.orgarc install-certificate https://reviews.freebsd.org
 CONNECT Connecting to “https://reviews.freebsd.org/api/”...
LOGIN TO PHABRICATOR
Open this page in your browser and login to Phabricator if necessary:

https://reviews.freebsd.org/conduit/login/

Then paste the API Token on that page below.

 Paste API Token from that page: cli-XXXXXcli-XXXXX
Writing ~/.arcrc...
 SUCCESS! API Token installed.

Using git-arc For a Single Commit
The first step in reviewing a commit is preparing the commit for review. The commit should

be a commit candidate with a suitable log message. Any fixups should be squashed back into
the commit so that the commit matches what would be pushed to the tree.

Creating the Review
Once the commit is prepared, the next step is to create a review for the commit via the cre-

ate subcommand. This command accepts a reference to the commit (e.g., a hash, or a symbolic
reference such as HEAD) as a positional argument after any options. The create subcommand
creates a new review in Phabricator using the commit’s log message to set the review title and
description. Reviewers can be added via the -r option. Multiple reviewers can be specified as a
comma-separated list or via multiple -r options. A group can be added as a reviewer by pre-
fixing it with the ‘#’ character, e.g. #bhyve to tag developers working on the bhyve(8) hypervi-
sor. This example creates a review for a commit on the gdb_11 branch to the devel/gdb port
marking the port maintainer (pizzamig@FreeBSD.org) as a reviewer:

> git log --oneline main..gdb_11git log --oneline main..gdb_11
6b21ea620990 devel/gdb: Update to 11.1.
> git arc create -r pizzamig gdb_11git arc create -r pizzamig gdb_11
commit 6b21ea62099007a0d376852731cdbde4d8d522d9 (HEAD -> gdb_11)
Author: John Baldwin <jhb@FreeBSD.org>
Date: Thu Sep 16 17:25:13 2021 -0700

 devel/gdb: Update to 11.1.

…
Does this look OK? [y/N] yy
...

2 of 6

https://www.freshports.org/devel/arcanist
https://www.freshports.org/devel/git
https://www.freshports.org/textproc/jq
https://reviews.freebsd.org
pizzamig@FreeBSD.org

10FreeBSD Journal • September/October 2021

The create subcommand first displays the commit including both the log message and the
patch. It then displays a prompt confirming if a review should be created. Answer ‘y’ to contin-
ue and create the review.

Updating the Review
The update subcommand can be used to update the review after changes are made to the

patch. First apply any changes to the git commit in question either by amending the commit or
by committing new changes and then squashing them back into the original commit. Note that
the update command only updates the patch in the review. It does not update the review’s ti-
tle or description, nor does it permit adding additional reviewers or subscribers. Those changes
must be made in Phabriactor’s web application instead.

Note: The update and stage subcommands use the first line of commit logs to find a review
with an identical title. If the first line of the commit log message is changed, the title of the
review must be updated in Phabricator before git-arc will properly recognize the existing re-
view for a commit.

This example updates the review for the devel/gdb port update after amending the original
commit with fixes from reviewer feedback:

> git arc update gdb_11git arc update gdb_11
commit 8d532ac873633ae12d42be709755f56f9d86c310 (HEAD -> gdb_11)
Author: John Baldwin <jhb@FreeBSD.org>
Date: Thu Sep 16 17:25:13 2021 -0700

 devel/gdb: Update to 11.1.

...
Does this look OK? [y/N] y
...

As with the create subcommand, update displays the log message and patch followed by
a prompt to confirm the update. Answer ‘y’ to continue and update the review. Next, an editor
window (using the editor configured in the user’s $EDITOR environment variable) will open. En-
ter a description of the changes made for this update, save the file, and exit the editor. This de-
scription will be added to the review as a comment.

Finalizing the Review and Pushing the Commit
Once the commit is ready to be published, the stage subcommand merges the commit to

the local main branch and amends the commit log with metadata from the review. Specifically,
git arc stage adds properly formatted ‘Reviewed by’ and ‘Differential Revision’ tags to the
commit log. After the operation completes, it leaves the working tree set to the new tip of the
main branch including the staged commit. The commit can then be reviewed via git show be-
fore pushing to the public tree. This example shows the final push of the update to devel/gdb:

> git checkout maingit checkout main
> git fetch freebsdgit fetch freebsd

3 of 6

11FreeBSD Journal • September/October 2021

> git merge freebsd/maingit merge freebsd/main
> git arc stage gdb_11git arc stage gdb_11
> git push freebsdgit push freebsd

The first three commands ensure the local main branch is up to date before staging the
commit. The stage subcommand pops up an editor window with the updated commit log after
merging the commit. This provides an opportunity to fix any formatting issues in the commit
log. Save the commit log and exit the editor to continue.

Note that the stage subcommand fails if it encounters conflicts when merging the commit
onto main. To resolve, rebase the original commit onto the updated main branch. If the chang-
es to fix the conflict resolution warrant review, then update the review. Otherwise, re-run the
stage subcommand with the rebased commit.

Using git-arc For a Branch
While git-arc is useful for individual commits, it provides the greatest benefit when working

with a branch containing multiple commits. The create, update, and stage sub-commands all
accept multiple commits in a single invocation. Commits can be identified either via individual
references as in the single commit examples above, or as Git revision ranges.

Creating the Reviews
For branches, git-arc creates reviews for each commit. These commits are linked together

into a stack in Phabricator. The review for the first commit in the branch is marked as a parent
revision of the review for the second commit and so on. This permits all of the branch commits
to be found in the Phabricator UI from the Stack tab when viewing a review for any individual
commit in the branch.

By default, the create subcommand will display the log message and patch for each com-
mit, prompting after each commit. For a branch with many commits, this step can be tedious,
so create accepts an optional -l argument. If this argument is given, then create will list all
of the candidate commits with a single confirmation prompt. If the user answers ‘y’ at the
prompt, then the stack of reviews are created without further prompts. This example creates
reviews for all of the commits for a branch checked out in the current directory. The branch
was created as a branch off of main:

> git arc create -l -s emaste main..git arc create -l -s emaste main..
2f7e09973ab6 cryptodev: Use ‘csp’ in the handlers for requests.
fbc805bb4d62 ccp, ccr: Simplify drivers to assume an AES-GCM IV length of 12.
8390644fd45f crypto: Permit variable-sized IVs for ciphers with a reinit hook.
f08d44eaa9ee cryptosoft, ccr: Use crp_iv directly for AES-CCM and AES-GCM.
43aaceb5afef cryptodev: Permit explicit IV/nonce and MAC/tag lengths.
0190b9e740d8 cryptodev: Permit CIOCCRYPT for AEAD ciphers.
03f07b455c80 cryptodev: Allow some CIOCCRYPT operations with an empty payload.
e0caaccf1ec0 cryptocheck: Support multiple IV sizes for AES-CCM.
ae4a0338bc8b crypto: Support multiple nonce lengths for AES-CCM.
cb18504c7712 aesni: Support multiple nonce lengths for AES-CCM.
60e1a45f2201 aesni: Handle requests with an empty payload.
aa653be04078 aesni: Permit AES-CCM requests with neither payload nor AAD.
fafcdb583930 aesni: Support AES-CCM requests with a truncated tag.
75c003b9ccbb ccr: Support multiple nonce lengths for AES-CCM.

4 of 6

12FreeBSD Journal • September/October 2021

de32cc23b0f9 ccr: Support AES-CCM requests with truncated tags.
6a88ac41d972 safexcel: Support multiple nonce lengths for AES-CCM.
ff4f260a5fd9 safexcel: Support truncated tags for AES-CCM.
e46422be0eaf cryptosoft: Fix support for variable tag lengths in AES-CCM.
d98f930cd833 crypto: Test all of the AES-CCM KAT vectors.
7ee5d373884e crypto: Support Chacha20-Poly1305 with a nonce size of 8 bytes.

Does this look OK? [y/N] yy
...

If one wishes to create individual reviews for commits on a branch without linking the re-
views together, that can be done by invoking git arc create separately for each commit. The
relationship between reviews can also be adjusted in the Phabricator web interface.

Checking Review Status
When working with a branch, it can be useful to examine the status of the individual reviews

associated with a branch. This can be done via the list subcommand. The list subcommand
accepts one or more commit names or commit ranges and outputs a single line of status for
each commit. For commits without an associated review, the status is reported as No Review.

This example shows the status of several commits on a gcc9_universe branch. For this par-
ticular branch, the author has chosen to review commits individually rather than as a series. As
such, some commits are not yet ready for review while others have been approved for merging
to main.

> git arc list main..gcc9_universegit arc list main..gcc9_universe
f0f665a2f4a5 Accepted D26202: Switch to GCC 9 for the GCC tinderbox.
a98a78e2dabc Accepted D26203: Pass -msecure-plt to GCC for 32-bit powerpc.
b4412a18ab23 Needs Review D31933: hyperv storvsc: Don’t abuse struct sglist to hold virtual addresses.
a0eaf413441a Accepted D31934: kernel: Disable errors for -Walloca-larger-than for GCC.
daf618e9a8c4 No Review : Fix various places which cast a pointer to a vm_paddr_t or vice versa.
8c46bb47a57f Needs Review D31938: bhyve: Add an empty case for event types in mevent_kq_fflags().
46d2ac2e7b3b Accepted D31941: Use a char * to avoid alignment warnings.
b2d94deacfa1 Needs Review D31945: libmd: Only define SHA256_Transform_c when using the ARM64 ifunc.
c9be458cee94 Accepted D31948: mana: Cast an unused value to void to quiet a warning.
8a9b7debfc0c No Review : arm64: Add compat macros for system registers for GNU as.

Updating Reviews
Using the update subcommand with a branch is not quite as straightforward as the other

commands. In particular, the update subcommand is not able to determine if the review asso-
ciated with a commit is already up to date (and thus should not be updated). Instead, it will al-
ways update all reviews if it is given the list of reviews for a branch. The update subcommand
also prompts for a description for each commit. With a branch, it is generally better to use the
update subcommand for individual commits after they have been changed rather than running
the subcommand against an individual branch.

Finalizing the Reviews and Pushing the Branch
Once all the commits are ready for pushing, the stage subcommand can be used to stage all

of the commits in the branch in a single operation. The user’s editor will be invoked to finalize

5 of 6

13FreeBSD Journal • September/October 2021

the commit log of each commit. Once the operation completes, the branch can be pushed via
git push as described earlier in the single commit example.

Individual commits in a branch can also be pushed by using the stage subcommand with
specific commits. After pushing those commits, rebase the branch to remove the pushed com-
mits from the branch. The list subcommand can then be used to examine the status of the
remaining commits on the branch.

Limitations and Caveats
While git-arc provides a streamlined interface on top of arc, it has several limitations of its

own:
• Matching a commit with an existing review requires the first line of the commit log to
match the title of the review. This means that if you update the first line of the commit log
for a commit with an existing review, the review title must be manually updated in Phabri-
cator before the update, list, or stage subcommands will recognize the review.

• Similarly, the update subcommand is only able to update the patch for a given review. It
does not update the review description if the commit log message has changed.

• If commits are dropped from a branch while it is in review, git-arc does not provide a way
to notice that commits are dropped or to abandon the associated reviews. Abandoning the
reviews must be done in Phabricator instead.

• If additional commits are added to a branch while it is in review, the list subcommand can
be used to find those commits and the create subcommand can be used to create reviews.
However, git-arc does not provide a way to auto-adjust the parent / child relationships in
Phabricator to update the stack to match the new layout of the branch. This must be done
manually in Phabricator instead.

• git-arc is not able to determine if a commit’s review is stale (that is, if a commit has been
updated since the review was created or last updated). Such functionality would be useful
to annotate stale revisions in the list subcommand. It could also make the update sub-
command more useful with revision ranges by omitting updates to unchanged commits.

JOHN BALDWIN is a systems software developer. He has directly committed changes to the
FreeBSD operating system for 20 years across various parts of the kernel (including x86 plat-
form support, SMP, various device drivers, and the virtual memory subsystem) and userspace
programs. In addition to writing code, John has served on the FreeBSD core and release engi-
neering teams. He has also contributed to the GDB debugger and LLVM. John lives in Concord,
California, with his wife, Kimberly, and three children: Janelle, Evan, and Bella.

6 of 6

14FreeBSD Journal • September/October 2021

Have you ever bought new equipment for your FreeBSD box and it turned out that some
functionality didn’t work? Instead of returning it, it may be possible to write your own driv-
er without much effort. We will explain how to write a simple USB driver for FreeBSD.

Case Study
In this article, we will look into a driver for Razer Ornata V2. The device is a Mecha-mem-

brane keyboard which works perfectly on FreeBSD with one small issue: you can’t change the
backlight color. In some cases, you may find a keyboard that has a built-in color change. This
means that the color will change independently on the software run on your machine under
some key combination. In the case of this keyboard, the driver in operating systems controls the
backlight. Thanks to that, you can have fancy patterns on your keyboard like fire flames. The
disadvantage is that you have to have a driver for it. The device is shown in Figure 1.

Figure 1. Razer Ornata V2

BY MARIUSZ ZABORSKI

1 of 14

How to Implement
a Simple USB Driver

for FreeBSD

15FreeBSD Journal • September/October 2021

Gathering the Information
First of all, we have to understand the protocol used in the driver. In the case of drivers for

Razer, we have two ways of doing it:
• Look into an openrazer (unofficial collection of Linux drivers for Razer devices)
• Sniff the USB protocol from the Windows driver
In this article, we will combine these two methods. When we initially looked into the prob-

lem, there wasn’t support for Razer Ornata V2 in the openrazer, so we had to deduct some of
the parts from a USB protocol dump. The support for this keyboard was recently added to the
openrazer, but when you try to write your driver, parts of it may not be available anywhere else
than in the official Windows drivers. For educational purposes, we will assume that the open-
razer doesn’t support this keyboard.

OpenRazer
To get a needed context about the driver, we will try to find the package structure used to

communicate with the keyboard, as this allows us to understand the dump from the USB sniff.
The source code for openrazer is available under https://github.com/openrazer/openrazer. In a
driver/razercommon.h file, we will find a razer_report structure, which is the main structure
of the driver. It is used across all of the devices from this product. The structure is shown in
Listing 1.

Listing 1. The razer_report structure defined by openrazer

structstruct razer_report {
 unsigned charunsigned char status;
 unionunion transaction_id_union transaction_id; /* */
 unsigned shortunsigned short remaining_packets; /* Big Endian */
 unsigned charunsigned char protocol_type; /*0x0*/
 unsigned charunsigned char data_size;
 unsigned charunsigned char command_class;
 unionunion command_id_union command_id;
 unsigned charunsigned char arguments[80];
 unsigned charunsigned char crc;/*xor’ed bytes of report*/
 unsigned charunsigned char reserved; /*0x0*/
};

Sniffing a Windows Driver
To sniff a Windows USB driver, we can use a usbpcap (https://desowin.org/usbpcap/) tool.

It is a command-line tool that is very simple to use (in Listing 2, we have an example). When
we run the command tool, it will show us available devices; next, it will ask us which device
we want to sniff and where to save a pcap file. The generated pcap file is easily viewable using
Wireshark.

We will be targeting a Razer Windows driver. On Windows, the Razer Synapse tool allows
you to customize the backlight colors of the keyboard. Let’s try to set up different colors of
the keyboard while the usbpcap is running. Thanks to this tool, we will record all requests sent
to the keyboard (the Razer Synapse is shown in Figure 2). At this point, we will apply the red
scheme on the whole keyboard.

2 of 14

https://github.com/openrazer/openrazer
https://desowin.org/usbpcap/

16FreeBSD Journal • September/October 2021

Listing 2. Usage of usbpcap to capture the USB protocol

Following filter control devices are available:
1 \\.\USBPcap1
 \??\USB#ROOT_HUB20#4&19d0fd2a&0#{f18a0e88-c30c-11d0-8815-00a0c906bed8}
 [Port 1] Generic USB Hub
 [Port 4] ThinkPad Bluetooth 4.0
 [Port 6] Integrated Camera

2 \\.\USBPcap2
\??\USB#ROOT_HUB20#4&182122df&0#{f18a0e88-c30c-11d0-8815-00a0c906bed8}
 [Port 1] Generic USB Hub

3 \\.\USBPcap3
\??\USB#ROOT_HUB30#4&23ace5cb&0&0#{f18a0e88-c30c-11d0-8815-00a0c906bed8}
 [Port 1] Generic USB Hub
 Razer Ornata V2
 Razer Ornata V2
 Razer Ornata V2
 Razer Ornata V2
 Razer Control Device
Select filter to monitor (q to quit):Select filter to monitor (q to quit): 3
Output file name (.pcap):Output file name (.pcap): t1.pcap

Combining Methods
Now that we have a pcap from the dump, we can start analyzing the recorded protocol.

Don’t get into too much detail on how USB drivers work; instead, glean the general idea about
the protocol. Most of the values we will just copy, as we might need to change them. We only
want to generate similar requests as the original driver.

In Figure 3, we can see a dump created using usbpcap under Wireshark; in this case, the
driver uses a setup packet. The setup packets are used for detection and configuration of the
USB devices. In Table 1, we can see a package defined by the USB specification as well as the
values that were sent by the driver.

Figure 2. Razer Synapse tool. The tool is used to configure the backlight color.

3 of 14

17FreeBSD Journal • September/October 2021

Table 1. Format of Setup Data from USB documentation, with the values from the dump.

Offset Field Size Value Description Values from pcap
0 bmRequestType 1 Bitmap Characteristics of request:

• D7: Data transfer direction
0 = Host-to-device
1 = Device-to-host

• D6...5:Type
0 = Standard
1 = Class
2 = Vendor
3 = Reserved

• D4...0:Recipient
0 = Device
1 = Interface
2 = Endpoint
3 = Other

• 4...31 = Reserved

0x21
• Data transfer direction:

Host-to-device
• Type:

Class
• Recipient:

Interface

1 bRequest 1 Value Specific request (for more de-
tails please refer to the USB
Specification)

0x09
SET_REPORT

2 wValue 2 Value Word-sized field that varies ac-
cording to request

0x300

4 wIndex 2 Value
or

Offset

Word-sized field that varies ac-
cording to request; typically
used to pass an index or offset

2

6 wLength 2 Count Number of bytes to transfer if
there is a data stage

90

After the setup data, we have specific data for a Razer Driver. In Figure 4, we combined the
pcap data with the razer_report structure from the openrazer project. Next, we can easily
see some more things about the arguments. First, we have 2 bytes set to 0, which we can as-
sume are reserved. Next, we have a one byte set to 1. When we look into the pcap, we can see
many similar packages that, in this place, have this value in range from 0 to 5. We can verify this
later, but actually it seems that this is the row number on the keyboard. Then, we have a value
0x15 (21), which is actually the number of keys in a row. Finally, there is a 21-times repeated val-
ue 0xff0000, which seems to refer to the red color that we set in RGB (R: 255, G:0, B:0).

Figure 3. The pcap generated using usbpcap under Wireshark. The Setup packet is highlighted.

4 of 14

18FreeBSD Journal • September/October 2021

Figure 4. The setup data with the structure obtained from openrazer.

0000 00 1f 00 00 00 47 0f 03 00 00 01 00 15 00 00 00

0010 ff 00 00 ff 00 00 ff 00 00 ff 00 00 ff 00 00 ff

0020 00 00 ff 00 00 ff 00 00 ff 00 00 ff 00 00 ff 00

0030 00 ff 00 00 ff 00 00 ff 00 00 ff 00 00 ff 00 00

0040 ff 00 00 ff 00 00 ff 00 00 ff 00 00 ff 00 00 00

0050 00 00 00 00 00 00 00 00 a0 00

Fields Values
Status
Transaction ID
Remaining packets
Protocol Type
Data Size
Command class
Command ID
Arguments
CRC
Reserved

0x00
0x1f
0x0000
0x00
0x47
0x0f
0x03
0000010015
0xa0
0x00

The packages used by the Razer Synapse seem to allow us to set each key to a different col-
or. Each package refers to a single row on the keyboard. Without going into too much detail of
USB and Razer protocol, this should be enough to implement any type of backlight effect we
might like.

Lastly, we need to find a vendor and product identifier which will allow us to find the cor-
rect USB device. To do that, we can use the usbconfig(8) tool on the FreeBSD box. The utility
has a special option, dump_device_desc, which allows us to print the details of all USB devices
connected to our box. The example of usage is shown in Listing 3.

Listing 3. Identifying vendor and product ID using usbconfig(8) tool.

usbconfig dump_device_desc
ugen0.4: <Razer Razer Ornata V2> at usbus0, cfg=0 md=HOST spd=FULL (12Mbps)
pwr=ON (500mA)

 bLength = 0x0012
 bDescriptorType = 0x0001
 bcdUSB = 0x0200
 bDeviceClass = 0x0000 <Probed by interface class>
 bDeviceSubClass = 0x0000
 bDeviceProtocol = 0x0000
 bMaxPacketSize0 = 0x0040
 idVendor = 0x1532
 idProduct = 0x025d
 bcdDevice = 0x0200
 iManufacturer = 0x0001 <Razer>
 iProduct = 0x0002 <Razer Ornata V2>
 iSerialNumber = 0x0000 <no string>
 bNumConfigurations = 0x0001

5 of 14

19FreeBSD Journal • September/October 2021

libusb&PyUSB
The first way of implementing a simple driver is to use libusb and PyUSB. This method allows

us to write a USB driver in a userland without any additional kernel modules. Writing drivers in
a userland is the most secure, because if there is a bug, it will expose only the kernel part for
attack.

The libusb is a library for USB devices. It is a cross platform library, so we can see a port of
it in FreeBSD, Linux, OpenBSD or even Windows. To simplify the task even more, instead of
writing a driver in C, we can implement it using Python, which is possible thanks to the PyUSB
module. PyUSB provides easy access to a host USB system. We can simply install pyusb using
the pkg(8) tool (e.g. pkg install py38-pyusb).

First, we have to find a valid device. To do that, we use a usb.core.find function. To identify
the right device, we can provide a product and vendor ID obtained from usbconfig(8), which is
shown in Listing 4.

Listing 4. Finding a device using PyUSB.

python
Python 3.8.10 (default, Jul 6 2021, 01:34:57)
>>> import usb.core
>>> dev = usb.core.find(idVendor=0x1532, idProduct=0x025d)
>>> dev.product
‘Razer Ornata V2’

To send a Setup packet, we use the ctrl_transfer function. The interface of this function
corresponds to the parameters described in the Setup packet. The simplest thing to do here
is to copy all sniffed parameters. The last step is to rebuild the package. In our driver, we will
assume that the color is hardcoded. Besides the color, row and CRC field, we will copy all of
them from the sniffed part (the whole process is shown in Listing 5). At the end, we also have
to recalculate the CRC field.

Listing 5. Sending a request to change a color using PyUSB.

importimport usb.core

Color
r = 0xff
g = 0x00
b = 0x00

defdef change_color(dev, line, r, g, b):
 # Recreate package
 package = bytes([
 0x00, # Status
 0x1f, # Transaction ID
 0x00, 0x00, # Remaining packets
 0x00, # Protocol Type
 0x47, # Data Size
 0x0f, # Command Class
 0x03, # Command ID

6 of 14

20FreeBSD Journal • September/October 2021

 # Arguments:
 0x00, # - unknown
 0x00, # - unknown
 line, # - line
 0x00, # - unknown
 0x15, # - number of keys
 0x00, 0x00, # - unknown
 0x00 # - unknown
])

 forfor _ inin range(0x15):
 package += bytes([r, g, b])

 # Fill up to 0x47 bytes size
 forfor _ inin range(0x3):
 package += bytes([0, 0, 0])

 # Recalculate crc
 crc = 0x00
 forfor x inin package:
 crc ^= x
 package += bytes([crc, 0x00]) # crc and reserved
 dev.ctrl_transfer(
 bmRequestType = 0x21,
 bRequest = 0x09,
 wValue = 0x300,
 wIndex = 0x02,
 data_or_wLength = package
)

dev = usb.core.find(idVendor=0x1532, idProduct=0x025d)
forfor line inin range(6):
 change_color(dev, line, r, g, b)

Kernel Module
In the case of a native driver, we have to write a FreeBSD kernel module. We also have to

implement some kind of communication between the kernel and the userland to tell the mod-
ule what color we want. To accomplish this, we can expose some additional sysctl, implement
a iocotl(9) or read the input from the USB dev node. In this article, we will look at the ioctl(9)
method.

Building a Kernel Module
First, we have to know how to compile the kernel module. The simplest way of doing this

is using a Makefile and including the bsd.kmod.mk file. Thanks to that, it will auto generate all
additional required files and headers. We also have to remember to include files like opt_usb.h,
buf_if.h and device_if.h., which is common for all kernel modules. In the KMOD detective, we
provide the name of the compiled driver. The example of Makefile is shown in Listing 6.

7 of 14

21FreeBSD Journal • September/October 2021

Listing 6. Makefile for building kernel module in FreeBSD.

SRCS=ornata.c
SRCS+=opt_usb.h bus_if.h device_if.h

KMOD=ornata

.include <bsd.kmod.mk>

The three standard methods that almost all drivers have to implement is probe, attach and
detach. There are also additional methods, like suspend and resume, but we won’t look into
them.

The probe is executed first to examine the device and decide if the driver is supported or
not. Here, we can use a VendorID and ProductID to decide if this is the device we are looking
for. We can accomplish that using a usbd_lookup_id_by_uaa function, which will iterate over
the given array of vendors and products to find a matching pair. We also have to check if the
device is in host mode (USB_MODE_HOST), which is needed to initiate data transfers. Next, we
want to be sure the device is actually a keyboard. The probe function is shown in Listing 7.

Listing 7. The USB probe function

static conststatic const STRUCT_USB_HOST_ID ornata_devs[] = {
 {USB_VPI(0x1532, 0x025d, 0)},
};

static intstatic int
ornata_probe(device_t self)
{
 structstruct usb_attach_arg *uaa = device_get_ivars(self);

 ifif (uaa->usb_mode != USB_MODE_HOST)
 returnreturn (ENXIO);

 ifif (uaa->info.bInterfaceProtocol == UIPROTO_BOOT_KEYBOARD)
 returnreturn (ENXIO);

 ifif (uaa->info.bInterfaceClass != UICLASS_HID)
 returnreturn (ENXIO);

 returnreturn (usbd_lookup_id_by_uaa(ornata_devs, sizeofsizeof(ornata_devs), uaa));
}

Two other methods that are useful are attach and detach. The attach function is called
when the probe phase is finished and the probe function returns success. It is an entry point
that allows the driver to initialize all required resources. At the opposite side, we have a detach
function that allows us to clean up after the device disappears.

In case of this, the driver in the attached function will initialize mutex needed for synchro-

8 of 14

22FreeBSD Journal • September/October 2021

nizing and allocate the USB driver’s entry points under /dev. The last part is done by the usb_
fifo_attach function. While creating a new node, we have to also define what operations it
supports (the ornata_fifo_methods variable), but we will look into that in the next phases.
While creating a node, we can define which user and group should be an owner (in our case
root(0) and wheel(0) group) and in what mode the node should be initialized (in our case ev-
eryone can read and write (666)). At this moment, we also introduce a helping structure which
stores all device specific variables. At the opposite side, in the detach routine, we call the
usb_fifo_detach function, which destroys its associated USB device node. These functions are
shown in Listing 8.

Listing 8. Attach and detach function for the driver.

structstruct ornata_softc {
 structstruct usb_fifo_sc sc_fifo;
 structstruct mtx sc_mtx;

 structstruct usb_device *sc_udev;
};

static intstatic int
ornata_attach(device_t self)
{
 structstruct usb_attach_arg *uaa = device_get_ivars(self);
 structstruct ornata_softc *sc = device_get_softc(self);
 intint unit = device_get_unit(self);
 intint error;

 device_set_usb_desc(self);
 mtx_init(&sc->sc_mtx, “ornata lock”, NULL, MTX_DEF);

 error = usb_fifo_attach(uaa->device, sc, &sc->sc_mtx,
 &ornata_fifo_methods, &sc->sc_fifo,
 unit, -1, uaa->info.bIfaceIndex,
 0, 0, 0666);
 ifif (error)
 goto detach;

 sc->sc_udev = uaa->device;

 returnreturn (0);
detach:
 mtx_destroy(&sc->sc_mtx);
 returnreturn (error);
}

static intstatic int
ornata_detach(device_t self)
{
 structstruct ornata_softc *sc = device_get_softc(self);

9 of 14

23FreeBSD Journal • September/October 2021

 usb_fifo_detach(&sc->sc_fifo);
 mtx_destroy(&sc->sc_mtx);

 returnreturn (0);
}

Finally, we can define the driver module, which is shown in Listing 9. We are creating a ker-
nel driver using a DRIVER_MODULE macro. In this part, we are setting the probe, attach and
detach function to the strcuture driver. The MODULE_DEPEND macro is used to set the depen-
dency on another kernel module. This is only used to help the operating system to load all re-
quired modules before loading this one; however, this does not dictate the order of the load.

Listing 9. Definition of kernel module.

staticstatic device_method_t ornata_methods[] = {
 DEVMETHOD(device_probe, ornata_probe),
 DEVMETHOD(device_attach, ornata_attach),
 DEVMETHOD(device_detach, ornata_detach),

 DEVMETHOD_END
};

staticstatic driver_t ornata_driver = {
 .name = “ornata”,
 .methods = ornata_methods,
 .size = sizeofsizeof(structstruct ornata_softc)
};

staticstatic devclass_t ornata_devclass;

DRIVER_MODULE(ornata, uhub, ornata_driver, ornata_devclass, NULL, 0);
MODULE_DEPEND(ornata, ukbd, 1, 1, 1);
MODULE_VERSION(ornata, 1);
USB_PNP_HOST_INFO(ornata_devs);

At this point, we can implement a function that will send setup data to the device. This can
be done using the usbd_do_request_flags function and the usb_device_request structure
representing the request. For the data part, we can use the structure from openrazer, as it is al-
ready implemented in the C language. For example, in the case of the python driver, the func-
tion will expect the color and the line to set, and most of the variables are just copied from our
sniffed requests. We also have to remember to recalculate the CRC field. The USET macros al-
low us to set data independent of CPU endianness. The function for setting the backlight color
is shown in Listing 10.

Listing 10. Attach and detach function for the driver.

static voidstatic void
ornata_set_color(structstruct ornata_softc *sc, uint8_t r, uint8_t g, uint8_t b, uint8_t
line)
{
 structstruct razer_report rr;
 structstruct usb_device_request req;

10 of 14

24FreeBSD Journal • September/October 2021

 charchar crc, *ptr;
 intint i;

 memset(&rr, 0, sizeofsizeof(rr));

 req.bmRequestType = 0x21;
 req.bRequest = 0x09;
 USETW(req.wValue, 0x300);
 USETW(req.wIndex, 2);
 USETW(req.wLength, sizeofsizeof(rr));

 rr.status = 0x00;
 rr.transaction_id = 0x1f;
 rr.remaining_packets = 0x00;
 rr.protocol_type = 0x00;
 rr.data_size = 0x47;
 rr.command_class = 0x0f;
 rr.command_id = 0x03;

 rr.arguments[2] = line;
 rr.arguments[4] = 0x15;

 forfor (i = 8; i < 8 + 0x15 * 3; i += 3) {
 rr.arguments[i] = r;
 rr.arguments[i + 1] = g;
 rr.arguments[i + 2] = b;
 }

 crc = 0;
 forfor (ptr = (charchar *)&rr; ptr != (charchar *)&rr + sizeofsizeof(rr); ptr++) {
 crc ^= *ptr;
 }

 rr.crc = crc;

 usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx, &req,
 &rr, 0, NULL, 2000);
}

Implementing ioctl
The only missing part in the driver is the methods used to communicate with the USB device

node. We will implement the ioctl method, as it is the simplest (but requires an additional pro-
gram to send an ioctl).

First, we have to define the ioctl. To accomplish this, we can use _IOW macro, which defines
a macro for a write operation — which means that the memory will be copied from userland
to the kernel. For other purposes, we can use _IOR to define a read ioctl, or _IOWR for read/
write operation, or _IO, which transfers no data. We will also use an additional structure,
ornata_color, just to transfer the data in an organized way.

11 of 14

25FreeBSD Journal • September/October 2021

The definition of ioctl is shared between the userland and the kernel, so a good idea is to
define a C file header that contains these definitions. The header is shown in Listing 11.

Listing 11. Attach and detach function for the driver.

#ifndef _ORNATA_H_
#define _ORNATA_H_

#include <sys/ioccom.h>

structstruct ornata_color {
 uint8_tuint8_t r;
 uint8_tuint8_t g;
 uint8_tuint8_t b;
};

#define ORNATA_SET_COLOR _IOW(‘U’, 205, struct ornata_color)

#endif

Now, getting back to the usb_fifo_attach, we use a structure ornata_fifo_methods
that hasn’t yet been defined. This structure defines supported operations on the device; for
example, open or close. In our case, we want to support ioctl operations. The basename field
describes the name of the node that should be created under /dev. When using the ioctl, the
memory is already safely copied from the userland to the kernel, so we can just use color struc-
ture. The implementation of ioctl is shown in Listing 12.

Listing 12. Implementation of ioctl method.

static intstatic int
ornata_ioctl(structstruct usb_fifo *fifo, u_long cmd, voidvoid *addr, intint fflags)
{
 structstruct ornata_softc *sc;
 structstruct ornata_color color;
 intint error;
 uint8_t line;

 sc = usb_fifo_softc(fifo);
 error = 0;

 mtx_lock(&sc->sc_mtx);

 switchswitch(cmd) {
 casecase ORNATA_SET_COLOR:
 color = *(structstruct ornata_color *)addr;
 forfor (line = 0; line < 6; line ++) {
 ornata_set_color(sc,
 color.r,
 color.g,
 color.b,
 line);
 }

12 of 14

26FreeBSD Journal • September/October 2021

 breakbreak;
 defaultdefault:
 error = ENOTTY;
 breakbreak;
 }

 mtx_unlock(&sc->sc_mtx);
 returnreturn (error);
}

static structstatic struct usb_fifo_methods ornata_fifo_methods = {
 .f_ioctl = &ornata_ioctl,
 .basename[0] = “ornata”
};

The disadvantage of this approach is that we have to implement an additional userland pro-
gram, because there is no way of generating the ioctl(2) from a command line. This program is
shown in Listing 13.

Listing 13. Example of usage of ioctl in userland.

intint
main(void)
{
 intint fd = open(“/dev/ornata0”, 0);
 structstruct ornata_color color;

 color.r = 0xFF;
 color.g = 0x00;
 color.b = 0x00;

 ioctl(fd, ORNATA_SET_COLOR, &color);

 returnreturn (0);
}

Summary
Implementing a userland driver isn’t that complicated, thanks to libusb and pyusb. The most

complicated part is actually understanding the protocol used by the device. If the protocol is
simple, we can just sniff a lot of data from existing drivers on different platforms. If the protocol
is more complicated, maybe there is an open-source project and we can port some part of it to
FreeBSD. In the case of writing a native driver, we have to be patient, as the routines are more
challenging. Implementing the kernel driver, we have to be very careful, as we can introduce
bugs. Also, if we mess up something, the kernel may just panic, and we will need to restart the
machine.

13 of 14

27FreeBSD Journal • September/October 2021

Bibliography
• USB 2.0 Specification — https://www.usb.org/document-library/usb-20-specification
• FreeBSD Device Drivers A Guide for the Intrepid by Joseph Kong
• Openrazer source code — https://github.com/openrazer/openrazer
• Roland’s homepage — Setting the Razer ornata chroma color from userspace

(https://rsmith.home.xs4all.nl/hardware/setting-the-razer-ornata-chroma-color-from-
userspace.html)

MARIUSZ ZABORSKI currently works as a security expert at 4Prime. Since 2015, he has been
the proud owner of the FreeBSD commit bit. His main areas of interest are OS security and
low-level programming. In the past, he worked at Fudo Security, where he led a team develop-
ing the most advanced PAM solution in IT infrastructure. In 2018, Mariusz organized the Polish
BSD User Group. In his free time, he enjoys blogging at https://oshogbo.vexillium.org.

14 of 14

Pluggable Authentication Modules:
 Threat or Menace?

PAM is one of the most misunderstood parts of systems
administration. Many sysadmins live with authentication
problems rather than risk making them worse. PAM’s very
nature makes it unlike any other Unix access control system.

If you have PAM misery or PAM mysteries, you need PAM
Mastery!

“Once again Michael W Lucas nailed it.” — nixCraft

PAM Mastery by Michael W Lucas
https://mwl.io

https://www.usb.org/document-library/usb-20-specification
https://github.com/openrazer/openrazer
https://rsmith.home.xs4all.nl/hardware/setting-the-razer-ornata-chroma-color-from-userspace.html
https://rsmith.home.xs4all.nl/hardware/setting-the-razer-ornata-chroma-color-from-userspace.html
https://oshogbo.vexillium.org

Nov/Dec 2019 57

May/June 2021

SECURITY

Seven Ways to Increase Security
in a New FreeBSD Installation

The copyinout Framework

Using TLS to Improve NFS Security

Plus:
Capsicum Case Study: Got
Practical Ports

2021 Editorial Calendar
• Case Studies (January-February)

• FreeBSD 13 (March-April)

• Security (May-June)

• Desktop/Wireless/Graphics (July-August)

• FreeBSD Development (September-October)

• Storage (November-December)

29FreeBSD Journal • September/October 2021

Aquestion that I frequently see is something along the lines of, “How do I get started in
operating system kernel development?” This is difficult to answer in general, but there
is a simpler side to the question, which is, “How can I set myself up to (efficiently) build

and test kernel changes?” In other words, while submitting one’s first kernel patch is a signif-
icant milestone, a frequent contributor may be working on multiple different patches, testing
patches (possibly obtained from other developers), bisecting to find the cause of a regression,
or debugging a kernel panic. It is important to have a workflow that minimizes the amount of
time spent waiting or fiddling with configuration knobs or shell scripts.

FreeBSD, being a large and rather long-lived project (even older than some of its developers)
and targeting a variety of hardware platforms (from palm-sized SoCs to large multi-core serv-
ers with terabytes of RAM), does not have a one-size-fits-all approach to these kinds of tasks.
However, the benefits of a fast edit-compile-test loop are universal; this article seeks to illustrate
a few tricks which can reduce the friction of many kernel development tasks.

The steps below assume a FreeBSD host and POSIX-compatible shell, such as /bin/sh.
While the project currently does not provide much in the way of canned scripts for building,
booting and testing kernel changes, some of the suggestions here can be incorporated into
one’s development environment or into a CI system shared by multiple developers.

Git Worktrees
Before starting any kind of work on FreeBSD one needs a copy of the src repository:

$ git clone https://git.freebsd.org/src.git freebsd

When working on multiple tasks, it will be useful to have multiple copies of the FreeBSD
source files. Having a single copy becomes awkward if a build of the currently checked out
branch is running and while waiting you want to switch to a different branch to work on some-
thing else, or possibly because switching branches would update timestamps on source files
and thus unnecessarily slow down future incremental builds.

It is of course possible to keep multiple clones of a repository, but a better solution is to use
git worktrees, which let one checkout multiple branches from a single clone. This requires less

BY MARK JOHNSTON

1 of 7

Kernel Development
Recipes

30FreeBSD Journal • September/October 2021

disk space and ensures that all of your work is contained in a single copy of the repository. For
example, it can be useful to have worktrees for frequently accessed stable and release branches:

$ cd freebsd
$ git worktree add dev/stable/13 origin/stable/13
$ git worktree add dev/releng/13.0 origin/releng/13.0
$ git worktree add dev/stable/12 origin/stable/12
$ git worktree add dev/releng/12.2 origin/releng/12.2
...

Note that worktrees may be located outside of the clone, for example:

$ git worktree add ../freebsd-stable/13 origin/stable/13

When working on a larger project, it is useful to keep a worktree dedicated to that branch.

Building and Booting a Custom Kernel — Quickly
Suppose that you have written a small, simple kernel patch and want to do some sanity

testing before submitting it for review. The standard command for building a FreeBSD kernel is
well-known:

$ cd freebsd
$ make buildkernel

This will perform a clean, single-threaded kernel build. It is usually preferable to use as much
CPU as is available, so consider adding -j $(sysctl -n hw.ncpu) to the make(1)flags: this
will run as many build jobs in parallel as there are CPUs in the system. Once a kernel has been
built from a particular source path, it is not usually necessary to rebuild every single source file
each time a change needs to be tested — an incremental rebuild is sufficient. To request an in-
cremental build, add the -DKERNFAST flag to the make(1) invocation:

$ make -j $(sysctl -n hw.ncpu) -DKERNFAST buildkernel

By default, a buildkernel will rebuild not only the kernel, but also every single kernel mod-
ule that comes with it, which on an amd64 system running a GENERIC kernel comes out to
822 modules. Many of these modules are also linked into the kernel proper (depending on the
kernel configuration file in use), so a buildkernel may spend considerable time rebuilding
modules that will never be loaded. The MODULES_OVERRIDE variable can be used to override
this behaviour; instead of building a kernel and all modules, a buildkernel with MODULES_
OVERRIDE will build only a kernel and the modules specified by the variable’s value. For exam-
ple, to build a kernel together with only the tmpfs.ko and nullfs.ko modules, run the follow-
ing:

$ make -j $(sysctl -n hw.ncpu) -DKERNFAST \
 MODULES_OVERRIDE=”tmpfs nullfs” buildkernel

2 of 7

31FreeBSD Journal • September/October 2021

If you know that your testing requires only a handful of modules, your build times can ben-
efit from setting MODULES_OVERRIDE since this may greatly reduce the number of filesystem
accesses performed during a build. If the source tree is located on a slow disk, or remotely and
accessed over NFS, for example, the MODULES_OVERRIDE option may save a lot of time.

Now that a test kernel is available, it can be tested. The procedure for testing a change de-
pends heavily on the nature of the change; a developer working on a WiFi driver will have dif-
ferent testing workflows than a developer working on bringing up FreeBSD on a new platform
or on the kernel memory allocator. For many purposes, however, a simple bhyve virtual ma-
chine (VM) is sufficient.

The FreeBSD project provides VM images that are handy for use in testing kernel changes.
While it is of course possible to build VM images locally, using the release(7) scripts for exam-
ple, the pre-built images are quite convenient:

$ IMAGE=”FreeBSD-14.0-CURRENT-amd64.raw.xz”
$ URL=”https://ftp.freebsd.org/pub/FreeBSD/snapshots/VM-IMAGES/14.0-CURRENT/amd64/Latest”
$ fetch -o “/tmp/${IMAGE}” “${URL}/${IMAGE}”
$ unxz “/tmp/${IMAGE}”
$ sudo pkg install -y bhyve-firmware
$ sudo sh /usr/share/examples/bhyve/vmrun.sh -E -d \
 “/tmp/${IMAGE%.xz}” myvm

This boots up the snapshot image using bhyve, in a VM called “myvm”. However, the VM
will be running the kernel included with the snapshot. There are several ways to update the im-
age’s kernel. For instance, a copy of the source tree could be copied or mounted into the boot-
ed VM, and a new kernel can be built within the VM. However, this will be slow unless the VM
is given a large amount of CPU and RAM, and poses the logistical problem of exporting the
source tree. Another approach could be to mount the disk image on the host and install a new
kernel directly, but this requires some synchronization to ensure that the VM and the host do
not have the image mounted at the same time.

A different approach is to provide a second disk containing only the custom kernel and
modules, and configuring the VM to boot from that instead. Such disk images can be created
quickly and without any special privileges on the host. First, the following commands can be
used to create such an image:

$ cd /usr/src
$ make buildkernel
$ make installkernel -DNO_ROOT DESTDIR=/tmp/kernel
$ cd /tmp/kernel
$ makefs -B little -S 512 -Z -o version=2 /tmp/kernfs METALOG
$ rm -f /tmp/kernfs.raw
$ mkimg -s gpt -f raw -S 512 -p freebsd-ufs/kern:=/tmp/kernfs \
 -o /tmp/kernfs.raw

The make commands build and install a kernel to /tmp/kernel without requiring root priv-
ileges. This also creates an mtree(8) manifest in /tmp/kernel/METALOG which is used by

3 of 7

32FreeBSD Journal • September/October 2021

makefs(8) to build a small filesystem. Finally, mkimg(1) adds a GPT to the filesystem, making it
accessible to the FreeBSD boot loader.

Now we can boot the VM again with the extra disk:

$ sudo sh /usr/share/examples/bhyve/vmrun.sh -E -d /tmp/kernfs.raw \
 -d “${IMAGE%.xz}” myvm

This still boots the kernel from the original image. However, the boot loader can be config-
ured to load the kernel from kernfs.raw instead, by adding the following line to /boot/load-
er.conf:

kernel=”disk0p1:/boot/kernel”

“disk0p1” here refers to the first partition of disk0, the first disk listed in the vmrun.sh
command-line arguments, which in this case is /tmp/kernfs.raw. After making this
change and rebooting, the VM should boot into the custom kernel.

The custom kernel filesystem is not mounted by default, which means that
tools like kldload(8) will not be able to automatically load kernel modules
corresponding to the custom kernel. To remedy this, add the following lines to the
corresponding system configuration files:

/boot/loader.conf:

Make sure that nullfs is available.
nullfs_load=”YES”

/etc/sysctl.conf:

Fix up paths used by the kernel linker.
kern.bootfile=/boot/kernel/kernel
kern.module_path=/boot/kernel

/etc/fstab:

Mount the custom kernel filesystem at /boot/kernel.
/dev/gpt/kern /mnt ufs ro 0 0
/mnt/boot/kernel /boot/kernel nullfs ro 0 0

Finally, consider adding autoboot_delay=1 to /boot/loader.conf: this reduces the loader
delay from ten seconds to one, which helps considerably when reboots are frequent.

While the setup was a bit involved, it only needs to be performed once, and we now have
a way to quickly boot up a freshly built kernel! Kernel builds can be done while the VM is run-
ning, and rebooting the VM will cause the latest kernel build to be loaded and run. When cre-
ating more elaborate testing environments, it may be desirable to build the base VM image lo-
cally as well, in which case the configuration updates described above may be automated.

4 of 7

33FreeBSD Journal • September/October 2021

Debugging a Custom Kernel
One benefit of using bhyve(8) is the GDB protocol stub available to the host. QEMU has a

similar feature. Using this, the host system can run a debugger on the guest kernel. Since our
custom kernel was built on the host, this functionality is trivial to use. The vmrun.sh currently
does not support enabling the GDB stub, but it can be enabled using a raw bhvye(8) invocation:

bhyve -c 1 -m 512M -H -A -P -G :1234 \
 -s 0:0,hostbridge \
 -s 1:0,lpc \
 -s 2:0,virtio-blk,kernfs.raw \
 -s 3:0,virtio-blk,FreeBSD-14.0-CUREENT-amd64.raw \
 -l com1,stdio \
 -l bootrom,/usr/local/share/uefi-firmware/BHYVE_UEFI.fd \
 myvm

Here, the -G :1234 parameter instructs bhyve(8) to listen on port 1234 for connections
from a debugger. When booting a VM, bhyve(8) may optionally pause waiting for a connec-
tion before booting the kernel; this is handy for debugging problems that arise early during ker-
nel boot-up. To enable this, specify -G w:1234.

While the VM is running (or waiting for a connection), the kgdb program (installed with the
gdb package) can attach to the guest using port 1234:

$ kgdb -q /tmp/kernel/usr/lib/debug/boot/kernel/kernel.debug
Reading symbols from /tmp/kernel/usr/lib/debug/boot/kernel/kernel.debug...
(kgdb) target remote localhost:1234
Remote debugging using localhost:1234
cpu_idle_acpi (sbt=432162053) at
/usr/home/markj/src/freebsd/sys/x86/x86/cpu_machdep.c:551
551 atomic_store_int(state, STATE_RUNNING);
(kgdb) set solib-search-path /tmp/kernel/usr/lib/debug/boot/kernel
Reading symbols from
/tmp/kernel/usr/lib/debug/boot/kernel/nullfs.ko.debug...
(kgdb) bt
#0 cpu_idle_acpi (sbt=432162053) at
/usr/home/markj/src/freebsd/sys/x86/x86/cpu_machdep.c:551
#1 0xffffffff81096ccf in cpu_idle (busy=0) at
/usr/home/markj/src/freebsd/sys/x86/x86/cpu_machdep.c:668
#2 0xffffffff80c62b41 in sched_idletd (dummy=<optimized out>,
dummy@entry=0x0 <nullfs_init>)
 at /usr/home/markj/src/freebsd/sys/kern/sched_ule.c:2952
#3 0xffffffff80be838a in fork_exit (callout=0xffffffff80c62660
<sched_idletd>, arg=0x0 <nullfs_init>,
 frame=0xfffffe0001141f40) at
/usr/home/markj/src/freebsd/sys/kern/kern_fork.c:1088
#4 <signal handler called>
(kgdb)

At this point the VM is suspended waiting for a command from the debugger. The continue
command can be used to resume the VM, and hitting ctrl-C in the debugger window will suspend

5 of 7

34FreeBSD Journal • September/October 2021

the VM again. This functionality is extremely useful for debugging kernel deadlocks and boot-time
problems. It is also possible to attach a debugger after the guest kernel has panicked, making it
easy to inspect threads and local variables without having to configure and recover kernel dumps.

Testing a Custom Kernel
We now have a fairly quick loop for incrementally testing changes to the FreeBSD kernel, as

well as some tooling for debugging problems when they arise. At this point some manual test-
ing might indicate that the patch is correct and ready for review. It may be useful though to run
some automated tests to increase confidence in the patch; the FreeBSD kernel is a large, mono-
lithic body of code, and there is always some potential for unforeseen regressions. A good
place to start is the FreeBSD regression test suite.

If you followed the steps above to set up a kernel development VM, then the test suite is al-
ready installed; use the following commands to run it:

cd /usr/tests
kyua -v test_suites.FreeBSD.allow_sysctl_side_effects=1 test

The allow_sysctl_side_effects flag enables tests which depend on being able to modify
global sysctl values, which is perfectly fine in a dedicated VM. Some tests will also be skipped if
they depend on third-party ports, such as Python. After a run, a summary of results (including
skipped tests) can be viewed with:

kyua report

A bhyve VM can be set up to automatically run the test suite upon booting up. One simple
way to achieve this is to add an /etc/rc.local script which runs the test suite, prints results
to the console, and shuts down the VM. A separate disk could be used to store the output of
kyua report, making the results easy to recover on the host.

The regression test suite covers a large number of FreeBSD features but is designed to com-
plete quickly. So while it can help find bugs with relatively little effort, more intensive stress
tests may be required. FreeBSD has several ways to further test kernel changes.

stress2
stress2 is a large stress test suite maintained by Peter Holm. It contains many hundreds

of regression tests for the core kernel’s filesystem and memory management subsystems. The
stress2 suite is included in the FreeBSD source tree, in tools/test/stress2, but is not part of
an installation. To run the tests, assuming a source tree is available in the test system, run:

cp -R ${SRCDIR}/tools/test/stress2 /tmp/stress2
pw user add stress2
cd /tmp/stress2
echo stress2 | make test

The stress2 suite requires at least several gigabytes of RAM and a large disk. It can take
multiple days to complete but is an excellent way to test systemic changes to the kernel. The in-
dividual tests are located under the misc subdirectory and can be run directly.

6 of 7

35FreeBSD Journal • September/October 2021

syzkaller
Finally, syzkaller has emerged as an effective tool for exercising portions of the kernel

reachable from the system call interface. Being a fuzzer, it is not particularly useful for proving
the correctness of a change, but it is very good at triggering rarely executed error paths and so
can help validate error handling code which may otherwise be difficult to trigger. It is also ef-
fective at provoking race conditions.

A detailed overview of syzkaller appeared in a previous FreeBSD Journal article. Setting
up a syzkaller instance is a somewhat involved task. Documentation is available in the syz-
kaller repository for setting up a FreeBSD host to run syzkaller (which performs fuzzing us-
ing QEMU or bhyve VMs).

An alternative approach which automates many of the setup steps makes use of Bastille
templates. Bastille is a system for deploying and managing jails on FreeBSD; Bastille templates
allow one to run code and modify configuration in a running jail. A Bastille template for run-
ning syzkaller is available. To use it, first install Bastille and create a thin, VNET-based jail
based on FreeBSD 13.0:

pkg install bastille
bastille bootstrap 13.0-RELEASE
bastille bootstrap https://github.com/markjdb/bastille-syzkaller
bastille create -V syzkaller 13.0-RELEASE 0.0.0.0 epair0b

This assumes that epair0b is Bastille’s “uplink” interface; it can be bridged with a host inter-
face to provide full network access.

Then, follow the setup steps documented in the bastille-syzkaller template’s README to cre-
ate a ZFS dataset for syzkaller and enable the required capabilities in the syzkaller jail. Finally,
the template can be applied, and syzkaller started, with:

bastille template syzkaller markjdb/bastille-syzkaller \
 --arg FREEBSD_HOST_SRC_PATH=${SRCDIR}
bastille service syzkaller syz-manager onestart

Typically ${SRCDIR} would be a git worktree referencing the branch to be built and tested;
this worktree is nullfs-mounted into the jail. The kernel fuzzed by syzkaller can be rebuilt
using the build.sh script installed by the template in the jail root user’s home directory:

bastille console syzkaller
service syz-manager onestop
sh /root/build.sh
service syz-manager onestart

At this point, syzkaller starts a web server listening on port 8080, displaying crash reports
and the progress of the fuzzing processes.

MARK JOHNSTON has been a FreeBSD user since 2010 and a committer since 2013. He cur-
rently works for the FreeBSD Foundation, where he spends time on improving the stability and
performance of the kernel, and on providing code reviews.

7 of 7

https://freebsdfoundation.org/wp-content/uploads/2021/01/Kernel-Fuzzing.pdf
https://github.com/google/syzkaller/tree/master/docs/freebsd#readme
https://github.com/google/syzkaller/tree/master/docs/freebsd#readme
https://bastillebsd.org
https://github.com/markjdb/bastille-syzkaller
https://github.com/markjdb/bastille-syzkaller/blob/master/README

36FreeBSD Journal • September/October 2021

O
ne of Unix’s strengths is that even though it involves a lot of typing, it grew a number
of helper utilities over the years. People developed neat little shortcuts to avoid typ-
ing or repeating the same keystrokes. One such invention was the shell history. Why
type something again when you can retrieve it from way back when you typed it

successfully the last time. For the uninitiated, typing the right keystrokes to invoke searching in
the shell history will make them fold a wizard hat in no
time—mouth still open in astonishment. Once they learn
how to do that, they might become less impressed. Then
it is time to install misc/mcfly and race through your shell
history just like Marty did in the movies. The intelligent
search takes your current directory into account or the
context within which you used the program and offers
you the proper commands. It does not mess with your
normal shell history file, allowing you to get comfortable
with mcfly.

Programmers like to listen to audio when hacking on
the latest code. A soothing visualization of the sound
waves hitting your ears has been popular since the days
of Winamp. If you want the same on the console, audio/cava is there for you. No matter what
you use: Pulseaudio, fifo (mpd), sndio, squeezelite or portaudio, jumping bar graphs will appear

BY BENEDICT REUSCHLING

Programmers
Programming Potpourri

PRACTICAL

This column covers ports and packages for FreeBSD that are useful
in some way, peculiar, or otherwise good to know about. Ports
extend the base OS functionality and make sure you get something
done or, simply, put a smile on your face. Come along for the ride,
maybe you’ll find something new.

1 of 4

Why type something
again when you can
retrieve it?

PRACTICAL

37FreeBSD Journal • September/October 2021

to match your tunes. Sweet, but don’t forget to wear headphones or your neighbors get angry.
Talk about eavesdropping.

Programmers not only write code, but they also need to test it. Performance is still crucial
for the user experience, even today with hardware the Apollo guidance computer would only
have dreamed of. To ensure a code change did not make things run more slowly, benchmarks
are used. One such benchmark for the commandline is benchmarks/hyperfine. It supports ar-
bitrary shell commands for statistical analysis across multiple executions. A warmup phase en-
sures that caches don’t interfere with measuring the right things. Outliers caused by some other
program running in the background are detected and hyperfine can run with varying numbers
of threads. The results are output in CSV, JSON, Markdown, and AsciiDoc. Your thesis basically
writes itself these days...

Did you ever have the need to securely transfer a file or string like a password over to anoth-
er computer? If SSH is too complex for you with its 740-character, public-key exchange, but you
don’t want to compromise on the security front, send your files through net/py-magic-worm-
hole instead. When sending a file, a short, humanly pronounceable character string is generat-
ed. Input this one-time key on the receiving side and the wormhole does its magic using Ren-
dezvous Message Exchange and PAKE-based security. It even allows tab-completion for the key,
saving you some keystrokes. The magic wormhole can also serve as a replacement for ssh-co-
py-id for the initial SSH key exchange. In the example below, I transferred my backup.zip over to
another machine. On the receiving side, I entered the code and confirmed the file. Moments lat-
er, the file was on the other side, just like a 30,000 light-years trip through the delta quadrant.

A common exercise for my undergraduate computer science students is to let them parse

text files in Unix. Comma separated values (CSV) are still popular file types in these assign-
ments. This usually happens before students get introduced to databases and SQL. If they knew
before, they’d probably all use the next tool I’m introducing without ever looking back: text-
proc/csvq. Read, update, and delete CSV files to your heart’s content. An interactive shell or
commandline-mode did not let the developers stop there. Execution of multiple operations in
sequence is possible in managed transactions. Variables, cursors and yes, temporary tables are
also supported. Oh, did I mention that besides CSV, JSON is also supported in full UTF-8 and
UTF-16 variants? Because why not?

Another tool is textproc/dasel (data selector), which supports JSON, YAML, TOML, and XML
in addition to CSV. It can convert between the different formats, put new content in and delete
existing entries. No need to learn a new tool each time a new language comes around. Chanc-
es are, someone has it already covered with “just another supported tool.”

Developers usually have a lot of machines, both at work and home. They also want to have
their familiar configuration everywhere, so that they are productive wherever they are. To stop
copying the dotfiles (that hold all the configuration magic) from one machine to the next, there

2 of 4

PRACTICAL

38FreeBSD Journal • September/October 2021

is sysutils/chezmoi. It synchronized the dotfiles across machines in a secure way. A single com-
mand can pull down all these configuration files on a new machine. When changing settings
on one machine, a single “chezmoi update” will ensure the change is present on another ma-
chine, too.

A quickstart guide and other documentation helps
you use chezmoi in no time.

If you like syntax highlighting and line numbers in
your output and wondered why cat(1) never evolved this
feature, consider using textproc/bat. A cat clone with
wings, capable of showing you non-printable characters,
does automatic paging, and includes git integration.

Some developers like to brag about how much code
they’ve written. But how much of it are comments and
blank lines? If you want to find out, devel/tokei can tell
you all about it. Tokei understands multi-line and nested
comments and ignores comments within strings. It sup-
ports over 150 languages, colors, and is very fast, even with big projects.

When I have not used a tool for a while, I tend to forget all the command line switches.
Then I have to look up the man page and build my command line again (especially with multi-
ple such flags). I should probably have written it down in a cheatsheet to save time. Something
similar must have gone through the head of the misc/cheat developer. How about all there is to
know about using tar? You can find this example on its github project page:

$ cheat tar

To extract an uncompressed archive:
tar -xvf ‘/path/to/foo.tar’

To extract a .gz archive:
tar -xzvf ‘/path/to/foo.tgz’

To create a .gz archive:
tar -czvf ‘/path/to/foo.tgz’ ‘/path/to/foo/’

To extract a .bz2 archive:
tar -xjvf ‘/path/to/foo.tgz’

To create a .bz2 archive:
tar -cjvf ‘/path/to/foo.tgz’ ‘/path/to/foo/’

Very handy and sometimes I find some new nuggets of wisdom in there, too. Try it with
commands like rsync. Run

cheat -l
to list all available cheatsheets. Of course, you can add cheatsheets of your own and share
them with the community. People will still think you are a Unix wizard by sharing these, per-
haps even more then.

3 of 4

Some developers like
to brag about how
much code they’ve
written. But how much
of it are comments and
blank lines?

PRACTICAL

4 of 4

39FreeBSD Journal • September/October 2021

And if you thought that bat was the only port named after an animal mentioned in this col-
umn, prepare to meet two new: dns/dog and dns/doggo. The latter was inspired by the for-
mer, but since the author did not know Rust (which dog is written in), he rewrote it in go (dog
+ go, you get the idea). Both are a modern CLI DNS clients (like dig) and support protocols like
DNS over HTTPS (DoH), DNS over TLS (DoT), DNS over TCP/UDP, and DNSCrypt. JSON support
is integrated in both dns/dog and dns/doggo and at least one of them supports multiple resolv-
ers at once. I’ll let you find out which, so that you can also enjoy the colors it produces. What a
dark world we used to live in. But then LSCOLORS slowed things down too much, but that’s a
story for another time.

But while we’re on the subject of colors, if you like them too much, why don’t you mix
some sysutils/lsd into your Unix work? This pretty ls alternative has both colors and icons and
was written in Rust (is there anything left that isn’t?). It certainly looks ... colorful. Don’t blame
me for headaches or other woes incurred by using any kind of lsd.

Back to the subject of this Journal issue, but staying with the colors: have you ever looked at
your git diff output and wondered if that could be improved? Wonder no more, devel/git-del-
ta comes to the rescue (even if you did not think you needed help). Layout and style for diffs is
what delta allows you to spend hours on, just to get the right color scheme. It includes a pager
and of course themes so that you don’t have to start from scratch. Line numbers, side-by-side
views, boxes with customized lines are all possible. Chances are, you will spend even more time
reviewing code with this tool. See what they tricked you into?

When your disk is overflowing with code snippets, patches, and uncommitted work, it’s
high time to open sysutils/duff. No, not the fictional beer, the duplicate file finder. It styles it-
self to be a prettier du utility, but you’ll be the judge of that. It certainly is fast and gives you an
overview of where disk space was eaten the most. I’m sure that duffs grouping into local, net-
work, and special devices gives sysadmins valuable information at a glance. Better run

git gc
once in a while to garbage collect some temporary files no longer needed.

Lastly, you could wake me up in the middle of the night and I would still be able to tell you
the find commandline syntax to search for a file or directory. It might take me some time to
spell out

find / -name “*foo*”
for you and I will be grumpy at you for waking me up. I value my beauty sleep, so I’ll tell you

about sysutils/fd. This tool is so easy to use that it only requires
fd foo

to list the results. Much easier, more sleep for me. Goodnight!

BENEDICT REUSCHLING is a documentation committer in the FreeBSD project and member
of the documentation engineering team. He serves on the board of directors of the FreeBSD
Foundation as vice president. In the past, he served on the FreeBSD core team for two terms.
He administers a big data cluster at the University of Applied Sciences, Darmstadt, Germany.
He’s also teaching a course “Unix for Developers” for undergraduates. He is one of the hosts
on the bsdnow.tv podcast.

https://www.bsdnow.tv

Donate to the Foundation!

Support
 FreeBSD

You already know that FreeBSD is an internationally
recognized leader in providing a high-performance,
secure, and stable operating system. It�s because of
you. Your donations have a direct impact on the Project.

Please consider making a gift to support FreeBSD for the
coming year. It�s only with your help that we can continue
and increase our support to make FreeBSD the high-
performance, secure, and reliable OS you know and love!

Your investment will help:

Funding Projects to Advance FreeBSD

Increasing Our FreeBSD Advocacy and

Providing Additional Conference
Resources and Travel Grants

Continued Development of the FreeBSD
Journal

Protecting FreeBSD IP and Providing
Legal Support to the Project

Purchasing Hardware to Build and
Improve FreeBSD Project Infrastructure

Making a donation is quick and easy.
freebsdfoundation.org/donate

®

®

BSD Events taking place through December 2021
BY ANNE DICKISON

November 2021 FreeBSD Vendor Summit
November 18-19, 2021
VIRTUAL

Join us for the online November 2021 FreeBSD Vendor Summit. The event will consist of virtual,
half-day sessions, taking place November 18-19, 2021. It’s free to attend, but we ask that you
register with the eventbrite system to gain access to the meeting room and separate hallway track.
In addition to vendor talks, we will also have discussion sessions.

Please send details of any FreeBSD related events or events that are of interest for FreeBSD
users which are not listed here to freebsd-doc@FreeBSD.org.

FreeBSD Fridays
https://freebsdfoundation.org/freebsd-fridays/

Our next FreeBSD Fridays session will take place in December. Stay Tuned!
Past FreeBSD Fridays sessions are available at: https://freebsdfoundation.org/freebsd-fridays/

FreeBSD Office Hours
https://wiki.freebsd.org/OfficeHours

Join members of the FreeBSD community for FreeBSD Office Hours. From general Q&A to
topic-based demos and tutorials, Office Hours is a great way to get answers to your FreeBSD-
related questions.

Past episodes can be found at the FreeBSD YouTube Channel.
https://www.youtube.com/c/FreeBSDProject.

41FreeBSD Journal • September/October 2021

OpenZFS Developer Summit 2021
November 8-9, 2021
VIRTUAL

The ninth annual OpenZFS Developer Summit will be held online, November 8-9 (Mon.-Tue.).
The goal of the event is to foster cross-community discussions of OpenZFS work and to make
progress on some of the projects that have been proposed. This 2-day event consists of a day of
presentation and a 1-day hackathon.

https://wiki.freebsd.org/DevSummit/202111
mailto:freebsd-doc@FreeBSD.org
https://freebsdfoundation.org/freebsd-fridays/
https://freebsdfoundation.org/freebsd-fridays/
https://wiki.freebsd.org/OfficeHours
https://www.youtube.com/c/FreeBSDProject
https://www.youtube.com/c/FreeBSDProject
https://wiki.freebsd.org/DevSummit/202111

