
5FreeBSD Journal • November/December 2021

Along with the adoption of SSDs, the need for more predictable IO latency is also grow-
ing. Traditional SSDs that expose a block interface to the host often fail to meet this
requirement. The reason is the way NAND flash works. Typically, within an SSD, flash

is divided into chips that consist of dies. A die can execute flash commands (read/write/erase)
independently. Dies contain planes which can execute the same flash commands in one shot
across multiple planes within the same die. Planes contain blocks which are erase units and
blocks contain pages which are read/write units.

The chips can be organized into multiple channels that can independently transfer data in
and out between NAND and the flash controller. As it is well known that pages in NAND can’t
be overwritten, a block must be erased first before its pages can be filled with new data. Blocks
have a limited number of times they can be erased. This count is also called the PE(Program/
Erase) count, which is different for different types of NAND. As an example, SLC NAND has a PE
count of around 100,000, the MLC PE count is somewhere between 1,000 to 3,000, and the
TLC PE count range is 100 to 300. Typically, SSDs internally run a Flash Translation Layer(FTL) that
implements a log-structured scheme which gives the host an abstraction of in-place updates by
invalidating the previous content. FTL’s also implement a mapping scheme to facilitate this.

As with any log-structured implementation, fragmented writes occur over time which cre-
ates the need for garbage collection (GC) to erase invalidated data and create free blocks. In
the case of SSDs, this will require moving valid pages from one block (GC source) to another
block (GC destination) and then erasing the source block and marking it free. The entire task
is performed transparently to the host which faces the drop in SSD performance as well as the
GC operations also affect the lifetime of flash media by writing valid data to GC destination
blocks. There are several studies and existing solutions to mitigate this like introducing TRIM/
UNMAP which aims to invalidate data from the host in such a way that minimizes the number

BY ARKA SHARMA, AMIT KUMAR, ASHUTOSH SHARMA

1 of 5

 Open
Channel
 SSDNAND flash SSDs are widely used as primary storage

devices due to their low power consumption
and high performance. However, SSD’s suffer
from unpredictable IO latency, log-on-log problems,
and resource underutilization.

6FreeBSD Journal • November/December 2021

of pages GC operation must move. Multi-stream SSD is a technique to attempt to store data in
such a way that data with similar lifetimes is stored in the same erase block, thereby reducing
fragmentation which, in turn, relaxes the GC to some degree. Workload classification is anoth-
er approach of reducing fragmentation. Open channel SSD(OCSSD) is another approach to in-
crease predictability and better resource utilization by shifting some of the FTL’s responsibility to
the host. Typically, the responsibilities of an SSD can be classified into following categories, data
placement, I/O scheduling, media management, logical to physical(L2P) address translation, and
error recovery.

OCSSDs can either transfer all (Fully host-managed Open-Channel SSD (1.2)) or some
(Host-driven Open-Channel SSD (2.0)) of the responsibilities to the host. Our work is inspired
by LightNVM which is Linux’s implementation of open channel SSDs and Linux specifics have
been modified to fit in FreeBSD’s ecosystem. As in LighNVM, it is observed that a shared mod-
el of responsibilities achieves a better balance without stressing the host to a greater extent.
We explore a model of OCSSDs where data placement, L2P management, I/O scheduling, and
some parts of NAND management are done by the host. Some tasks like error detections and
recoveries are still done on the device side. The OCSSD exposes a generic abstracted geometry
of the media (NAND), wear-leveling threshold, Read/Write/Erase timings, and write constraints
(min/optimal write size).

The geometry information typically depicts the parallelism
within the underlying NAND media through the number of
channels, chips, blocks, and pages. The host can query the
state of blocks through commands and get the following in-
formation: LBA start address, current write offset within the
chunk, and state of blocks (Full, Free, Open, Bad). The drive
provides active feedback of chunk health, thus reminding
the host to move data from those chunks when required.

So far, basic read and write use cases have been tested using FIO. Garbage collection, which
is one of the must-have features, hasn’t yet been developed due to bandwidth unavailability. All
the development efforts have been on QEMU, hence the performance benchmark data is also
currently unavailable. Before we received the update about the removal of LightNVM in Linux
in 5.15, we planned to on implementing this solution as a GEOM class and with some specific
solution where we could consider a custom box with some NVRAM/NVDIMM/PCM as cache
and that being coupled with open channel SSDs. But at this point, we have chosen to scrap
these ideas. In the future, we look forward to getting involved with work related to NVMe ZNS
in FreeBSD.

We have split our work into two components. The FTL part which we call pblk, and the driv-
er which we called lighnvm, keeping the nomenclature similar to LightNVM in Linux. We fol-
lowed the model of nvd to write the lightnvm driver. The lightnvm driver creates a DEVFS entry
“lightnvm/control” which can be used by various tools(nvmecli) to manage the OCSSD device.
We have added support for OCSSD devices in nvmecli. The underlying NVMe driver (sys/dev/
nvme) initializes the device and notifies the lightnvm driver. The lightnvm driver registers the de-
vice to the lightnvm subsystem, the lightnvm system initiates the initialization process and pop-
ulates the geometry of the underlying media by querying it from the device via the NVMe Ge-
ometry admin command(http://lightnvm.io/docs/OCSSD-2_0-20180129.pdf). After the device
geometry has been populated, the lightnvm subsystem registers the device along with it’s ge-
ometry and other NAND attributes.

2 of 5

Some tasks like error

detections and recoveries

are still done on the

device side.

7FreeBSD Journal • November/December 2021

Once a user initiates the creation of an OCSSD target (via nvmecli), the lightnvm driv-
er carves the requested space out of the OCSSD and creates a “disk” instance for the target
which interfaces with geom subsystem. The IOs are intercepted by the strategy routine and for-
warded to the pblk subsystem for further processing. The completion of IOs is notified by nvme
to the lightnvm, which relays it to the pblk and is subsequently passed up to the geom layer.

GEOM

target

nvme_ns_bio_process
make_request

iodone
PBLK NVME

submit_io

end_io nvm_done
NVM core

strategybiodone

L
i
g
h
t
N
V
M

N
V
M

t
a
r
g
e
t

Media AbstractionFTL logic Media Interface

We kept the FTL algorithm in the pblk layer largely similar to that of LightNVM. We defined
the mapping units to be 4K (also called sectors), which implies that each logical page of size
4K to be mapped with a 4K part of a physical page which is typically larger than 4K. We use
nvmecli to carve out the parallel units and create a target. While creating the target, we have
an option to choose the target type, which allows us to select the underlying FTL (in case we
have more than one) with the target.

As mentioned before, the NAND is divided into chips/dies/plane/blocks. In the context of
lightnvm and keeping the terminologies consistent with OCSSD specification, we use the term
group for channels, PU or parallel units for chips, and chunk for blocks. OCSSD spec also de-
fines Physical Page Address or PPA which locates a physical page in NAND in terms of group,
PU, chunk and page number within chunk. OCSSD compliant devices expose the NAND geom-
etry via the ‘geometry’ command which is defined in OCSSD specification, and abstracts some
of the particularities of underlying NAND media. This allows the user to choose the start and
end parallel units which would be part of the target. This also enables the underlying FTL to
define ‘lines’ which is an array of chunks across different parallel units such that the data could
be striped to take advantage of the underlying NAND parallelism. This can be achieved two
ways: if the target consists of PU’s that are connected to different NAND channels, then the
data from the SSD controller can be sent to/received from NAND simultaneously. If the PU’s of
the target are connected to the same channel, the data flow can’t happen in parallel. However,
once the data flow is complete and flash commands are being executed inside PU’s, channels
could be utilized for transfer data to/from other PU’s. In the case where the target contains one
single PU, as expected, we can’t have parallelism.

For writing data, we typically write it to a cache and return the success status to geom. We
have a writer thread that writes data from this cache to NAND. The size of the cache is com-
puted such that it must accommodate the number of pages that have to be written ahead of a
page before data can be read from that page. Suppose the underlying NAND has a restriction
that 16 physical pages must be written ahead of a page, and let us say we want to read data
from page 10. To be able to reliably read from the chunk, pages up to 26 must be written.
Now, if we consider striping, it will take more time to fill those pages, as all the chunks in the
line will have same restriction. Also, we must ensure that the maximum number of sectors in a
chunk that can be written in a single vector write commands to be fit in cache. The reason for

3 of 5

8FreeBSD Journal • November/December 2021

this is that chunks can have program failure and to do a chunk replacement and retry the write
command, we need to hold that much data in the cache. And the cache must be able to hold
that much data multiplied by the number of PU’s in the target. So, to avoid data loss, we need
to ensure these pages fit in the cache. The L2P mapping data is maintained in three places:
in the host memory which maps the entire target, at the end of the line which maps only the
pages written in that line, and in the spare area of the physical page which contains the data of
the logical page. As mentioned before, garbage collection has not yet been implemented due
to bandwidth unavailability.

As mentioned above, we have a writer thread that reads the data from the cache and writes
it to a NAND device. As we defined the mapping unit of the device to be of 4K size, we have
divided the cache and the ring buffer in terms of entries with each entry corresponding to 4K
of user data. We store some counters in a ring buffer which act as pointers to dictate the writ-
er thread to pick the right ring buffer entry for flushing the data to the NAND device, acknowl-
edging that flush is successful, and updating the L2P map so that the logical page maps to a
physical page instead of to the cache entry. These counters store the cache information such as
size of the cache in terms of ring buffer entries (4K), how many writable/free entries are avail-
able in the cache, how many entries are yet to be submitted to the NAND device, entries whose
acknowledgment is yet to be received from the device, entries whose acknowledgment we got
from the device, and entries whose physical mapping needs
to be updated from cache address to the device’s PPA. So,
now with the help of these counters, the writer thread will
calculate the ring buffer entries whose data need to be
flushed to the device. Now it will check if the number of
entries (which need to be flushed to the device) is greater
than the minimum write pages data (a.k.a. Optimal Write
Size). Let’s consider Optimal Write Size as 8 sectors (8 *
4K). So, if the number of entries is less than 8, then the
thread will come out and retry in the next run. But if the
number of entries is greater than or equal to the 8 (Optimal
Write Size), then it will read those entries from the cache.
While forming the vectored write command to write data
to the physical page, we create a meta-area for each page
where we write the LBA of the associated page. This is
done so that we can recover the mapping in case of pow-
er failure. In the current implementation, we have only one
active write end, which means we will write to one single
line until it is full or there is a program failure, in which case
we allocate a new line and write in that. Once we have all
8 (Optimal Write Size) sectors available in the memory pages (data + meta), we will write the
data to the device and update the WP (write pointer) of the device and internally in the NAND
pages the LBA information will be updated in the spare area. In the case where a write request
gets failed by the device, then we will add those failed IOs to a resubmit queue. Here also, the
consumer of the resubmit queue is the writer thread. This time, the writer thread will read only
those failed entries from the ring buffer (cache). So, now if the number of entries is less than 8
(Optimal Write Size), then we will add padding (dummy pages) and resubmit the write request
to the device.

The L2P mapping data is

maintained in three places:

in the host memory which

maps the entire target, at

the end of the line which

maps only the pages written

in that line, and in the spare

area of the physical page

which contains the data

of the logical page.

4 of 5

9FreeBSD Journal • November/December 2021

For the read request we receive the number of sectors requested to be read, along with the
starting sector and the data buffer, encapsulated in a bio structure. Consider a read request for
8 sectors. Now, we read the L2P mapping of the first sector. If the logical address of first re-
quested sector is mapped to cache i.e., the data resides in the cache/ring buffer, then we calcu-
late the number of contiguous sectors whose data reside in the cache. Suppose the logical ad-
dress of all 8 sectors is mapped to cache. Then we just copy the data of all 8 sectors from the
cache to the pages of the read bio structure and call the bio_done to send data back to the
above layer (geom).

In another scenario, where the first requested sector is
mapped with the device, we calculate the number of contig-
uous sectors whose data reside in the device and we create
a child bio for those contiguous sectors and send a read re-
quest to the device with appropiate PPA. Now suppose the
logical address of all 8 sectors is mapped to the NAND de-
vice. Then we will create a child bio of 8 pages and send the
read request for those 8 sectors to the device. Meanwhile,
the parent (read) bio will wait until we receive the acknowl-
edgment from the device for the read completion. After this,
the read bio which was sent from GEOM will, update it’s
buffer with the data read in child bio, and call the bio_done
to send the data back to geom.

Now there is another hybrid case, where partial data re-
sides in the device and the remaining data in the cache. Let’s
consider an example where the first two sectors are residing
on the device, the third and fourth sectors are on the cache,
and the remaining four sectors again reside on the device.
Now, the first step is the same i.e., we find the mapping of
the first sector is on the device, we find the contiguous sector count as 2. We create the child bio
of two pages, we send the read request to the device using the child bio. Now, we’ll find the logi-
cal address mapping of the third sector is on cache and once again we get the contiguous sectors
count as 2. So, we read the two appropriate ring buffer entries and copy their data to the read
(parent) bio’s pages. Once again, we find the mapping of the fifth sector is on the device and the
contiguous sectors count is 4. This time we create another child bio to read the remaining four sec-
tors from the device. Now the parent (read) bio must wait until we receive the acknowledgment
from the device for both child BIOs. In the end, read IO will get the data from both child BIOs and
the cache, and then we call the bio_done and complete the read request.

ARKA SHARMA has working experience on various storage components like drivers, FTLs,
and option ROMs. Before getting into FreeBSD in 2019, he worked in WDM mini-port and UEFI
drivers.

AMIT KUMAR is a system software developer and currently works on storage products based
on FreeBSD. He has been a FreeBSD user since 2019. In his spare time, he likes to explore the
FreeBSD IO stack.

ASHUTOSH SHARMA currently works as a software engineer at Isilon. His main area of inter-
est is storage subsystems. In the past, he worked on Linux md-raid.

In another scenario, where

the first requested sector is

mapped with the device,

we calculate the number of

contiguous sectors whose

data reside in the device and

we create a child bio for

those contiguous sectors and

send a read request to the

device with appropiate PPA.

5 of 5

