
January/February 2022

Software
and System Management Issue

CBSD Part 1
Contributing to
FreeBSD Ports with git
pf_syncookies
A review of
The Kollected Kode Vicious

LETTER
from the Foundation

Justin Gibbs • Founder of the FreeBSD Foundation,
President of the FreeBSD Foundation,
and a Software Engineer at Facebook.

Daichi Goto • Director at BSD Consulting Inc.
(Tokyo).

Dru Lavigne • Author of BSD Hacks and
The Best of FreeBSD Basics.

Michael W Lucas Author of more than 40 books including
Absolute FreeBSD, the FreeBSD
Mastery series, and git commit murder.

•

Kirk McKusick • Treasurer of the FreeBSD Foundation
Board, and lead author of The Design
and Implementation book series.

Hiroki Sato • Director of the FreeBSD
Foundation Board, Chair of Asia
BSDCon, Member of the FreeBSD
Core Team, and Assistant
Professor at Tokyo Institute of
Technology.

Robert N. M. Watson • Director of the FreeBSD Foundation
Board, Founder of the TrustedBSD
Project, and University Senior Lecturer
at the University of Cambridge.

Advisory Board
Anne Dickison • Marketing Director, FreeBSD Foundation

John Baldwin • FreeBSD Developer and Chair of
FreeBSD Journal Editorial Board.

Tom Jones • FreeBSD Developer, Internet Engineer
and Researcher at the University of
Aberdeen.

Allan Jude • CTO at Klara Inc., the global FreeBSD
Professional Services and Support
company.

George Neville-Neil • Past President of the FreeBSD Foundation,
member of the FreeBSD Core Team,
and co-author of The Design and
Implementation of the FreeBSD
Operating System.

Ed Maste • Senior Director of Technology,
FreeBSD Foundation and Member
of the FreeBSD Core Team.

Benedict Reuschling • Vice President of the FreeBSD Foundation
Board and a FreeBSD Documentation
Committer.

Mariusz Zaborski • FreeBSD Developer, Manager at
Fudo Security.

FreeBSD Journal (ISBN: 978-0-615-88479-0) is published 6 times
a year (January/February, March/April, May/June, July/August,

September/October, November/December).
Published by the FreeBSD Foundation,

3980 Broadway St. STE #103-107, Boulder, CO 80304
ph: 720/207-5142 • fax: 720/222-2350
email: info@freebsdfoundation.org

Copyright © 2021 by FreeBSD Foundation. All rights reserved. This magazine may not be
reproduced in whole or in part without written permission from the publisher.

Publisher •
Editor-at-Large •

Design & Production •
Advertising Sales •

Walter Andrzejewski
walter@freebsdjournal.com

James Maurer
jmaurer@freebsdjournal.com

Reuter & Associates

Walter Andrzejewski
walter@freebsdjournal.com
Call 888/290-9469

J O U R N A L
®

S&W PUBLISHING LLC

Editorial Board

PO BOX 3757 CHAPEL HILL, NC 27515-3757

3FreeBSD Journal • January/February 2022

Welcome to the January/February issue of the
FreeBSD Journal. A new year brings new
opportunities for users and developers alike.

One source of new opportunities this year is
FreeBSD’s ports collection. The collection is ever-
changing as it tracks changes in both third party
software and the base system. Mateusz Piotrowski
walks through the process of contributing a new
port, while Joseph Mingrone describes some of the
best practices for contributing changes to ports after
the migration from Subversion to Git.

CBSD provides a framework for managing both
jails and bhyve virtual machines on FreeBSD. Oleg
Ginzburg provides the first installment in a series of
articles introducing users to the CBSD framework
and how it can be used. In a similar vein, Tom Jones
introduces a new tool for creating jails.

Kristoff Provost describes yet another episode in
his ongoing work maintaining FreeBSD’s port of the
pf packet filter.

This issue also features two conference reports
from EuroBSDCon. We hope to feature more
conference reports in future issues this year both
from “established” BSD conferences and new
venues.

As always, we love to hear from our readers.
If you have feedback on any of our articles,
suggestions for topics for a future article, or are
interested in writing an article, please email us at
info@freebsdjournal.com.

On behalf of the FreeBSD Foundation,
John Baldwin
FreeBSD Developer
and Chair of the FreeBSD Journal Editorial Board

mailto:info@freebsdjournal.com

January/February 2022

 3 Foundation Letter
By John Baldwin

 47 WIP/CFT:mkjail
By Tom Jones

 49 Practical Ports
A Review of The Kollected Kode Vicious By Benedict Reuschling

 52 We Get Letters
Packaged Base By Michael W Lucas

 56 Conference Reports
EuroBSDCon 2021 By Katie McMillan and René Ladan

 62 Events Calendar
By Anne Dickison

 5 Contributing to the FreeBSD Ports
Collection
By Mateusz Piotrowski

 12 Contributing to FreeBSD Ports with Git
By Joseph Mingrone

 27 CBSD: Part 1—Production
By Oleg Ginzburg

 39 Porting OpenBSD’s pf syncookie Code
to FreeBSD’s pf
By Kristof Provost

Software and System Management Issue

4FreeBSD Journal • January/February 2022

5FreeBSD Journal • January/February 2022

Why would you use ports?
Many FreeBSD releases ago, the FreeBSD Ports Collection was the primary way to install

third-party software. Users would build software they needed from ports. In theory, there were
some binary packages available, but the overall support for them wasn’t that great. Package man-
agement tools were cumbersome. Package repositories contained outdated packages. Building
software from ports was a necessity.

The situation began to change around the time when the new pkg(8) package management
tool emerged. Nowadays, FreeBSD packages repositories are one of the largest and most up-to-
date in the open-source world (see the graphs on repology.org). Most FreeBSD users use binary
packages instead of compiling ports themselves and it has been like that since I started using us-
ing FreeBSD, which was around version 10.3.

Although binary packages are great, people use FreeBSD Ports Collection directly all the time.
Both FreeBSD maintainers and FreeBSD users use it all the time. Why would FreeBSD users use it?
Because ports make it really easy to tailor binary packages to very specific needs. Would you like
to rebuild the Nginx package with a custom patch? No problem. Would you like to add an un-
usual backend to your collectd daemon? Easy. Would you like to get a debug build of Python?
No big deal.

In this article I would like to give you some insights about contributing to the FreeBSD Ports
Collection. How to get started? Why to get started? What does it take to submit a patch? Keep
reading if you want to know the answers to those questions.

Hello, my name is Mateusz, I would like to contribute to FreeBSD
This is a message I see all the time, whether on the mailing lists, Discord or IRC channels.
Typically, it gets answered with a bunch of links to bug trackers and wiki pages with project

ideas. You would expect that long-time contributors love to introduce newcomers to their proj-
ects. This is true (and that is a sign of a healthy open-source community). What is also true is
that long-time contributors are reluctant to reply to such messages. Why is that so? Well, they
know that there is a high chance that they won’t hear back from that newcomer ever again.
Yes, you heard me right. Basically, this is not how you get started contributing to open source.
Don’t get me wrong. I used to send similar messages all the time in the past myself. Why? Be-
cause it felt like the right way to start! I had the time and motivation, I just needed the commu-
nity to give me an interesting project to focus on. Isn’t that simple?

It turns out that it works slightly differently. Becoming absorbed in a project listed on some
project ideas page is borderline impossible. Project ideas land on wiki pages because no one
had the motivation to spend the the necessary amount of time to do the work. How could it
possibly be picked up by a newcomer if it doesn’t spark joy even among seasoned contribu-
tors? I am not sure. Some project ideas just have to wait for their champion.

BY MATEUSZ PIOTROWSKI

1 of 7

Contributing to the
FreeBSD Ports Collection

6FreeBSD Journal • January/February 2022

How to get started then? The truth is that you need to find the area you are passionate
about on your own. Here is what you can do. Start using FreeBSD regularly. Explore the system
and pay attention to what annoys you. Ask yourself such questions as:

1. How do I get my laptop to suspend automatically if the battery is running low?
2. Could the GPU setup documentation be more straightforward?
3. How cool would be to have a proper icon for Xpdf in application launchers and menus?
The greatest motivation to contribute comes from an itch to scratch. A problem so annoying

that you decide to fix it on your own. A problem so interesting that resisting the urge to to fix it
straightaway is futile. A problem so common that solving it surely will give you all the street cred
at the next conference. In other words, the easiest way to start contributing is to work on some-
thing you need. Of course, you are going to get stuck at some point. What is different this time
is that you have a specific problem at hand. These problems attract a good deal of attention in
the community. Remember those “unreachable” seasoned contributors? Trust me, they are go-
ing to answer your questions much more often now as you seem to be quite motivated to solve
some interesting problems there. Because it’s much more fun helping somebody out with a
problem rather than helping somebody out with finding a problem.

Scratching an Itch (Missing Xpdf Icons Edition)
This part of the article describes a workflow of developing a patch for the FreeBSD ports.

When I was starting hacking on FreeBSD ports, I often wondered how others develop their
patches. (Now that I think about, I am still fascinated by the efficiency of certain ports commit-
ters. Perhaps more than ever.) For some reason exact development workflows are infrequently
described in the official FreeBSD documentation. Without further ado, let’s see what it takes to
cook up a ports patch.

First Encounter
It is a sunny Saturady evening, the snow is melting. You are computing important things on

your FreeBSD desktop. You are going through your ever-growing todo list. One item at a time. The
next task requires a PDF reader. No problem. Let’s use our venerable Xpdf for that. So you fire up
Xfce Application Finder and search for Xpdf. Everything is going smoothly. And then you see it.
The Xpdf entry does not have a proper icon. Imagine that! This cannot be. We need to fix this.

Before we start hacking on the ports tree, let’s understand why the Xpdf icon is missing.
Xfce Application Finder generates the list of entries based on the desktop files located in
/usr/local/share/applications.

The one called /usr/local/share/applications/xpdf.desktop describes the Xpdf en-
try. Let’s see if there is something related to icons in that file.

2 of 7

7FreeBSD Journal • January/February 2022

$ grep -i icon /usr/local/share/applications/xpdf.desktop
Icon=xpdf

The icon’s name is xpdf. Let’s see if we can find such an icon in /usr/local/share/icons.

$ find /usr/local/share/icons -name *xpdf*

The output of our find(1) one-liner is empty. The Xpdf icon is not installed. At this point, we
probably need to take a look at the ports tree.

Developing a Patch
The first thing we need is a copy of the FreeBSD ports tree. You can read up on the details

in the FreeBSD Handbook (https://docs.freebsd.org/en/books/handbook/ports/#ports-using).
Ultimately, the following command is all we need:

$ git clone https://git.FreeBSD.org/ports.git ~/ports

Now let’s examine the Xpdf port. How do we find it among all the ports? There are a cou-
ple of different ways to do it.

The easiest way is to ask pkg(8) about the origin of the package.

$ pkg search -o xpdf
japanese/xpdf Japanese font support for xpdf
graphics/xpdf Display PDF files and convert them to other formats
graphics/xpdf3 Display PDF files and convert them to other formats
graphics/xpdf4 Display PDF files and convert them to other formats
print/xpdfopen Command line utility for PDF viewers

pkg-search(8) searches the package repository catalogue looking for package names match-
ing “xpdf”. The -o option tells pkg-search(8) to show the origin of the package in the output.
The origin is the official term for the directory name of a port within the ports tree. This is ex-
actly what we are looking for.

Tip: Sometimes I don’t know the name of the package that installed a file I’d like to fix. In
those cases I use pkg-which(8):

$ pkg which /usr/local/share/applications/xpdf.desktop
/usr/local/share/applications/xpdf.desktop was installed by package xpdf-4.03,1

OK, so we learnt that the origin of the Xpdf package is graphics/xpdf. Let’s see what is in-
side the port’s directory:

$ cd ~/ports/graphics/xpdf
$ ls
Makefile

3 of 7

https://docs.freebsd.org/en/books/handbook/ports/#ports-using

8FreeBSD Journal • January/February 2022

Aha! For those of you, who are new to ports: what we see here does not look like a typical
port. Usually, you expect to find other files like distinfo containing checksums of source code
archives, pkg-descr containing a longer description of the port, and pkg-plist listing all the
files this port installs. Let’s see what’s inside the Makefile:

$ cat -n Makefile
 1 VERSIONS= 3 4
 2 XPDF_VERSION?= 4
 3
 4 MASTERDIR= ${.CURDIR}/../xpdf${XPDF_VERSION}
 5
 6 .include “${MASTERDIR}/Makefile”

See the MASTERDIR variable on line 4? It means that graphics/xpdf is a master port.
When this port is build, it’s actually graphics/xpdf4 driving the whole process. (BTW, Xpdf
version 4 is apparently the default, judging by line 2). Down the rabbit hole!

$ cd ~/ports/graphics/xpdf4
$ ls
distinfo files Makefile pkg-descr pkg-message pkg-plist

Just as expected. High time we grabbed a copy of the source code. We do it with the
extract target defined by the FreeBSD Ports framework.

make extract

All the source code and build artifacts live in directory ./work in the port’s directory. E.g., the
source code of Xpdf gets extracted into work/xpdf-4.03.

Tip: It is a good idea to run the patch target as well. The reason is that we want all the local
FreeBSD ports patches applied to the freshly extracted, unmodified source code.

make patch

Alright, we’ve got all the basics covered. Let’s start code spelunking. Are there any icons in
the Xpdf sources?

$ find work/ -name *icon*
work/xpdf-4.03/xpdf-qt/indicator-icon-err5.svg
work/xpdf-4.03/xpdf-qt/indicator-icon-err2.svg
work/xpdf-4.03/xpdf-qt/indicator-icon1.svg
work/xpdf-4.03/xpdf-qt/indicator-icon6.svg
work/xpdf-4.03/xpdf-qt/icons.qrc
work/xpdf-4.03/xpdf-qt/xpdf-icon.svg
work/xpdf-4.03/xpdf-qt/indicator-icon7.svg
work/xpdf-4.03/xpdf-qt/indicator-icon0.svg
work/xpdf-4.03/xpdf-qt/indicator-icon-err3.svg
work/xpdf-4.03/xpdf-qt/indicator-icon-err4.svg
work/xpdf-4.03/xpdf-qt/indicator-icon3.svg

4 of 7

9FreeBSD Journal • January/February 2022

work/xpdf-4.03/xpdf-qt/indicator-icon4.svg
work/xpdf-4.03/xpdf-qt/indicator-icon-err7.svg
work/xpdf-4.03/xpdf-qt/indicator-icon-err0.svg
work/xpdf-4.03/xpdf-qt/indicator-icon-err1.svg
work/xpdf-4.03/xpdf-qt/indicator-icon-err6.svg
work/xpdf-4.03/xpdf-qt/xpdf-icon.ico
work/xpdf-4.03/xpdf-qt/indicator-icon5.svg
work/xpdf-4.03/xpdf-qt/indicator-icon2.svg

Excellent! xpdf-icon.ico and xpdf-icon.svg look promising. These are the files we need
to get installed into /usr/local/share/icons. In order to do that we need edit the port’s
Makefile and expand the install targets. This port already has a post-install target so let’s
add four more lines to it. We will use ${INSTALL_DATA} to install icon files, and ${MKDIR} to
create directories. These variables are examples of numerous wrapper variables defined in the
FreeBSD Ports framework. If you’d like to know more about those variable take a look at the
output of, e.g., make -V INSTALL_DATA. The patch should look like this so far:

diff --git a/graphics/xpdf4/Makefile b/graphics/xpdf4/Makefile
index bd81dd1a16be..36bd84d97e7e 100644
--- a/graphics/xpdf4/Makefile
+++ b/graphics/xpdf4/Makefile
@@ -70,5 +71,9 @@ post-install:
 ${INSTALL_DATA} ${WRKDIR}/xpdf-man.conf \
 ${STAGEDIR}${PREFIX}/etc/man.d/xpdf.conf
 ${INSTALL_DATA} ${FILESDIR}/xpdf.desktop ${STAGEDIR}${DESKTOPDIR}
+ ${MKDIR} ${STAGEDIR}${PREFIX}/share/icons/hicolor/256x256
+ ${INSTALL_DATA} ${WRKSRC}/xpdf-qt/xpdf-icon.ico
${STAGEDIR}${PREFIX}/share/icons/hicolor/256x256/xpdf.png
+ ${MKDIR} ${STAGEDIR}${PREFIX}/share/icons/hicolor/scalable
+ ${INSTALL_DATA} ${WRKSRC}/xpdf-qt/xpdf-icon.svg
${STAGEDIR}${PREFIX}/share/icons/hicolor/scalable/xpdf.svg

 .include <bsd.port.mk>

This is nice. Since we are installing two new files now, we need to add them to the packing
list (pkg-plist). The list can be regenerated with make makeplist, but we’ll do it by hand
this time. Here’s the patch:

diff --git a/graphics/xpdf4/pkg-plist b/graphics/xpdf4/pkg-plist
index e6cd3e15dd75..7eee2ae85bc6 100644
--- a/graphics/xpdf4/pkg-plist
+++ b/graphics/xpdf4/pkg-plist
@@ -10,6 +10,8 @@ libexec/xpdf/pdftotext
 %%GUI%%libexec/xpdf/xpdf
 %%GUI%%bin/xpdf
 %%GUI%%%%DESKTOPDIR%%/xpdf.desktop
+%%GUI%%share/icons/hicolor/256x256/xpdf.png
+%%GUI%%share/icons/hicolor/scalable/xpdf.svg

5 of 7

10FreeBSD Journal • January/February 2022

 etc/man.d/xpdf.conf
 %%DATADIR%%/man/man1/pdfdetach.1.gz
 %%DATADIR%%/man/man1/pdffonts.1.gz

Paths in that list are relative to ${PREFIX} (/usr/local by default). %%GUI%% at the begin-
ning of the line means that those files are only going to be installed if this port is built with the
GUI option enabled (apparently, some people like to have their Xpdf software headless).

The last bit we need to take care of is to bump the port’s revision number. Once the change
lands in the ports tree, port builders must know to rebuilt the package with our modifications.
The easiest way to bump the revision is to use portedit (it’s a part of the portfmt package):

$ portedit bump-revision -i Makefile

As a result we should see the following in the diff:

diff --git a/graphics/xpdf4/Makefile b/graphics/xpdf4/Makefile
index bd81dd1a16be..36bd84d97e7e 100644
--- a/graphics/xpdf4/Makefile
+++ b/graphics/xpdf4/Makefile
@@ -1,5 +1,6 @@
 PORTNAME= xpdf
 PORTVERSION= 4.03
+PORTREVISION= 1
 PORTEPOCH= 1
 CATEGORIES= graphics print
 MASTER_SITES= https://dl.xpdfreader.com/

Great! Now let’s test our changes. For that we need to build and reinstall Xpdf. The follow-
ing command is enough. You may want to run make missing first and install the dependen-
cies with pkg(8) to save time.

make reinstall

Time to check if the Xpdf entry in Xfce Application Finder has an icon now.

6 of 7

11FreeBSD Journal • January/February 2022

Success!
We need to test the patch a bit more before we submit it for review.

1. Does Xpdf still work? (Launch the newly reinstalled Xpdf and see if everything™ is in
order.)

2. Does our patch work as exptected? (We’ve seen the icon in Xfce Application Finder so
the answer is yes.)

3. Can you build Xpdf in Poudriere? (Hmm?)
Poudriere setup is well explained in the “Testing the Port” chapter of the FreeBSD Porter’s

Handbook: https://docs.freebsd.org/en/books/porters-handbook/testing/.

Submitting the Patch
FreeBSD Bugzilla is the service where contributors upload patches with suggested chang-

es: https://bugs.freebsd.org. The whole process is fairly straightforward. First, you create an ac-
count and log in. Then you open a new problem report (PR) by clicking “New” in the naviga-
tion bar at the top. Remember to prefix the summary with “graphics/xpdf4”. This way the
port’s maintainer will get notified about the PR (some other tips on how to write a good PR are
written down here: https://wiki.freebsd.org/Bugzilla/DosAndDonts). Sometimes, in addition to
opening a PR on Bugzilla, people submit their patches to Phabricator. This other service has a
nicer interface for code reviews.

Oh, BTW, the problem of missing Xpdf icons is based on a true story. I’ve reported the issue
with Xpdf on Bugzilla (https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=261376) and posted
my patch to Phabricator (https://reviews.freebsd.org/D33984). The Xpdf maintainer reviewed
my patch and gave the green light to commit the change. Since I am a ports committer, I com-
mitted the change myself.

Getting help
One day you will embark on your own journey of contributing to the FreeBSD ports tree.

Many feel overwhelmed and terrified when facing the challenge. Fear not! The FreeBSD com-
munity is always ready to help you out. IRC channels, mailing lists, forums, and most recently
Discord are all great venues to talk to other FreeBSD folks and ask questions.

Most importantly, have fun hacking on FreeBSD and enjoy your time among the FreeBSD
folks. See you at the zoo!

MATEUSZ PIOTROWSKI is a FreeBSD ports and documentation committer based in Berlin.
He enjoys troubleshooting bugs, scripting automation, and designing robust software systems
(always thoroughly documenting everything along the way). Recently, his interests have drifted
toward tracing and performance engineering. When he is not hacking on the supposedly deter-
ministic circuitry of modern software, he is exploring the ever-changing dynamics within society
and culture.

7 of 7

https://docs.freebsd.org/en/books/porters-handbook/testing/
https://bugs.freebsd.org
https://wiki.freebsd.org/Bugzilla/DosAndDonts
https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=261376
https://reviews.freebsd.org/D33984

12FreeBSD Journal • January/February 2022

T
he FreeBSD ports tree was created in 1994 and tracked using CVS until July 15, 2012
when Subversion took over. A second repository conversion occurred on April 6, 2021
when the source of truth was migrated from Subversion to Git. As both CVS and Sub-
version are centralized version control systems, the required workflow changes associ-

ated with the first conversion were not as complex as with the conversion to Git, a distributed
version control system.

This is not a comprehensive guide to using Git. The goal of this article is to guide those
new to either Git or FreeBSD ports through a Git workflow that can be used to contribute to
FreeBSD ports. Topics covered include:

• a brief overview of important Git concepts
• staying up to date with remote repositories
• working with branches
• committing
• modifying history
• working with Phabricator reviews
• testing changes with poudriere
• keeping track of upstream releases.

For a thorough introduction, refer to the Pro Git book and the Git Primer Chapter of the
FreeBSD Committer’s Guide. Also not covered is how to work with the make specifications that
ports and the ports infrastructure are written in. This is covered in detail in the FreeBSD Porter’s
Handbook.

What makes Git fundamentally different from centralized version control systems like Subver-
sion is its support for distributed workflows. Git does not require a central server that contains
blessed copies of the versioned files because 1. copies of the repository are full clones that in-
clude meta-data and full history and 2. Git commits are snapshots of the repository rather than
delta-based changes to files. Snapshots are described using hash algorithms that take as input
the state of the repository and produce a deterministic hash value in the form of a hexadecimal
string. If two copies of the repository are in the same state, the hash values describing the cop-

BY JOSEPH MINGRONE

1 of 16

Contributing to
FreeBSD Ports with Git

https://git-scm.com/book/
https://docs.freebsd.org/en/articles/committers-guide/#git-primer
https://docs.freebsd.org/en/articles/committers-guide/#git-primer
https://docs.freebsd.org/en/books/porters-handbook/book/
https://docs.freebsd.org/en/books/porters-handbook/book/

13FreeBSD Journal • January/February 2022

ies will be the same, whereas two repositories that differ by a single bit flip will produce differ-
ent hash values. The history of a Git repository is a collection of these snapshots joined togeth-
er so that each commit points to its parent commit(s).

A Git workflow may include 1. creating a local branch to develop a new feature, 2. merging
the work in the feature branch with the main branch, and 3. pushing the changes to another
Git repository. For a FreeBSD ports contributor, a new feature might mean creating or updating
a port, or even something as simple as fixing a typo. When work in the feature branch is ready,
it can be reviewed and merged with the official FreeBSD ports repository. Git branches are well
suited for keeping the development of new features organized and isolated and their creation is
very lightweight, as it simply involves creating a new pointer to a snapshot.

Because much of the work with Git occurs locally, there is no single workflow that all con-
tributors must subscribe to. Work the way that best suits you. The official FreeBSD ports repos-
itory does enforce certain conventions though. For example, we require a simple, linear history
of commits, so that the history of the main branch under Git looks similar to how it looked un-
der Subversion. To do this, certain constraints are required, which we will discuss. Other proj-
ects use different workflows that results in parallel paths in the main branch of the repository.
In short, Git is flexible and there is no single workflow that suits all people or projects. Indeed,
as of early 2022 there is a FreeBSD working group exploring how we can optimize the way we
work with Git, so refinements may be forthcoming. With these caveats out of the way, let’s ex-
plore a Git workflow that is suitable for contributing to the FreeBSD ports tree.

Installing Git
The simplest way to get Git installed on your FreeBSD system is to use the official FreeBSD

package.

pkg install git

For more information about installing third-party software on FreeBSD, refer to the FreeBSD
Handbook Chapter on installing applications.

Cloning the Ports Tree
If you would like to contribute a new port to the tree, but do not already have something in

mind, you can start by scanning the list of requested ports on the FreeBSD Wiki. Suppose we
wish to create a new port for an application currently on the list, the Nyxt browser. The first
step is to clone the FreeBSD ports repository. If you are using ZFS, you may wish to create a
dedicated dataset for your development ports tree.

zfs create zroot/usr/home/ashish/freebsd/ports

Of course, substitute zroot/usr/home/ashish/freebsd/ports for your dataset layout.
Now clone the repository. You are downloading the entire repository, which includes over
40,000 ports and a 28-year history, so this will take some time.

 git clone -o freebsd --config remote.freebsd.fetch=+refs/notes/*:refs/notes/*
https://git.freebsd.org/ports.git ~/freebsd/ports

2 of 16

https://docs.freebsd.org/en/books/handbook/ports/
https://docs.freebsd.org/en/books/handbook/ports/
https://wiki.freebsd.org/WantedPorts
https://nyxt.atlas.engineer/

14FreeBSD Journal • January/February 2022

The -o freebsd sets the name for the default remote repository for collaboration (pulling and
pushing changes). The --config remote.freebsd.fetch=+refs/notes/*:refs/notes/*.
adds Subversion revision numbers to the notes field of commits that occurred prior to the con-
version to Git. When the clone is finished, you can optionally create a child ZFS dataset where
software distribution files will be stored when building ports.

zfs create zroot/usr/home/ashish/ports/distfiles

Unlike the ports themselves, which are mostly text files, the software distribution files are usual-
ly already compressed, so zfs compression can be turned off for the zroot/usr/home/ashish/
freebsd/ports/distfiles dataset.

zfs set compression=off zroot/usr/home/ashish/freebsd/ports/distfiles

You have a few options for telling make(1) about the location of your ports tree. The first op-
tion is to add configuration to /etc/make.conf.

.if ${.CURDIR:M/usr/home/ashish/freebsd/ports/*}
PORTSDIR=/usr/home/ashish/freebsd/ports
.endif

An alternative method is to set the PORTSDIR environment variable. For example, if your shell is
zsh, you can add the line below to ~/.zshrc.

export PORTSDIR=/usr/home/ashish/freebsd/ports

If you plan on working with multiple ports trees, a tool like sysutils/direnv is useful for
loading or unloading environment variables depending on the current directory.

Staying Up to Date
The ports tree is actively developed, so changes will be pushed frequently to git.freebsd.org/

ports.git. To fetch the changes that occurred in the upstream FreeBSD repository, use

git -C ~/freebsd/ports fetch freebsd

Fetching gives you an opportunity to inspect what changes have been made before integrat-
ing those changes into a local branch. Here -C ~/freebsd/ports instructs Git to operate on
the repository under ~/freebsd/ports. If the current working directory is ~/freebsd/ports,
which from this point on is assumed, this flag can be omitted. The freebsd argument means
fetch from that remote repository.

To list the commits that were pushed to freebsd’s main branch that are not part of the lo-
cal main branch, run

git log --oneline main..freebsd/main

3 of 16

https://www.freebsd.org/cgi/man.cgi?make(1)
https://www.freshports.org/sysutils/direnv/

15FreeBSD Journal • January/February 2022

Beside the topmost hash, you will see two pointers, freebsd/main and freebsd/HEAD. HEAD
is normally a pointer to the last commit in the branch and in this case, like freebsd/main, it
points to the last commit in the main branch of the remote repository. If we run

git log --oneline freebsd/main

and continue down the list of commits, we will eventually see HEAD and main which both point
to the last commit on the local main branch. To integrate the new commits from freebsd/
main into our local main branch, run

git merge freebsd/main --ff-only

The --ff-only (fast-forward only) option means only integrate the work from freebsd/main
into main if it can be done by moving the main branch pointer to point to the same commit as
freebsd/main. This can only happen when the commits listed in the output of

git log --oneline main..freebsd/main

descend from the local main branch. If changes have been made to the local main branch that
are not part of freebsd/main, --ff-only will cause the merge to fail. In the workflow de-
scribed here, we will never make direct changes to the local main branch, so this should never
be a problem, but to be safe, we can configure the merge command to always use --ff-only
with

git config merge.ff only

As a convenience, there is a pull command that will do both the fetch and merge. Depend-
ing on the circumstances, using pull may not be wise, because you do not get the opportuni-
ty to inspect what will be integrated into your local branch. If the commits in the main branch
of your ports repository are always a subset of the commits in freebsd/main (as recommend-
ed here), this is less of a concern. To reduce the chances of diverging from freebsd/main
when using git pull, we can configure the command to only do fast-forward merges as well
with

git config pull.ff only

Creating a Local Branch
Now that we can keep our repository copy up-to-date with git.freebsd.org/ports.git,

let’s create changes. This is where Git really shines with the use of local branches, which pro-
vide a clean and efficient way to keep work-in-progress organized. Start by creating a new fea-
ture branch to work on the new nyxt port.

git branch nyxt

Now switch to the nyxt branch using

4 of 16

https://docs.freebsd.org/en/books/porters-handbook/new-port/

16FreeBSD Journal • January/February 2022

git checkout nyxt

A shorthand for both creating and switching to a branch is

git checkout -b nyxt

To check which branch you have checked out, you can run

git branch --show-current

You may find it useful to display the current branch in your shell prompt. If your shell is zsh,
you can use shells/git-prompt.zsh from the ports tree. A nice feature of git-prompt-zsh
is that it updates the prompt asynchronously, so when git status or some other Git opera-
tion is taking time to complete, it doesn’t block other work. If this appeals to you and you use a
shell other than zsh, there are similar code snippets to get Git status information in your prompt
if your shell is bash, fish, or tcsh.

First Commit
After you have hacked on your new port, it is time to commit your changes. First, let’s take a

look at the status of the working tree with

git status

Depending on what work you did, this may tell you that the file www/Makefile was modified
when you added SUBDIR += nyxt and you should also see www/nyxt as untracked. When in-
teracting with the filesystem under the repository by adding, editing, or removing files, you are
interacting with Git’s working tree. Before you can commit changes to the repository, you have
to stage which changes will be included in the next snapshot. In Git terminology, you add files
from your working tree to the index. This extra step is useful, because it gives you precise con-
trol over what goes into a commit. To add all the changes to the index, run

git add www/Makefile www/nyxt

Now git status will list all the modified or added files as staged and ready to be committed.
Before we commit though, there are a few more one-time tasks to complete. Git has a hook
feature, which is a way to execute custom scripts when certain events like committing or merg-
ing occur. To configure Git to search the location where ports-specific hooks are stored in the
ports repository, with the current working directory anywhere under the repository, run

git config --add core.hooksPath .hooks

That directory contains the prepare-commit-msg hook, which provides a helpful template for
formatting commit messages. We also want to configure the editor that will be launched to
create commit messages. Git chooses the editor to launch in this order: the value of the GIT_
EDITOR environment variable, its core.editor configuration variable, the VISUAL environment

5 of 16

https://www.freshports.org/shells/git-prompt.zsh/
https://github.com/magicmonty/bash-git-prompt
https://fishshell.com/docs/current/cmds/fish_git_prompt.html
https://gist.github.com/nicwolff/2925803

17FreeBSD Journal • January/February 2022

variable, and the EDITOR environment variable. For example, we can tell Git to use terminal
Emacs to edit commit messages with

git config core.editor “emacs -nw”

If you would like to use this editor for all your Git repositories, add the --global option when
setting core.editor.

git config --global core.editor “emacs -nw”

To commit your changes run

git commit

Your editor should now be displaying the commit template, which provides tips for creating a
commit message. The subject line should take the form <part of the ports tree that is
changing>: <brief overview of the change> and ideally be under 50 characters. A good
subject line might be www/nyxt: (WIP) First attempt to port Nyxt browser. After a
blank line, the body of the commit message provides more detail. An example might be

Makefile is still a skeleton.
TODO:
- Add _DEPENDS
- Add license information
- Fix QL_DEPS
- Add do-build target

After saving and exiting the editor your changes will be committed. So far, our changes pro-
gressed from the working tree, to the staging area (index), and finally to the local repository.
To inspect your commit, use git log, which will also confirm that the HEAD and nyxt pointers
have advanced one commit ahead of the main branch pointer.

Rewriting Local History
Whereas committing with Subversion meant sending your changes to the server, commit-

ting in Git simply means recording your changes locally in a new snapshot. Thus, with Git, it is
wise to commit often. When it is time to share your work with others, you can refine your local
history. There are a few different ways to rewrite history. For example, if you see a typo in your
latest commit message, this is a good time to fix it, since your changes are still local. To modify
the most recent commit, run

git commit --amend

and amend the commit message in your editor. If you accidentally did not stage and commit
your changes to www/Makefile in the last commit, simply stage that file before running git
commit --amend and it will be added to the last commit. Methods for rewriting history be-
yond the most recent commit will be discussed later.

6 of 16

18FreeBSD Journal • January/February 2022

Testing
Before requesting a review, your new port must be tested. There are two port linters that

can alert you about common violations. Install them with

pkg install portlint portfmt

To lint your port with portlint, from ~/freebsd/ports/www/nyxt, run

portlint -AC

To lint your port with portclippy from the portfmt package, also from ~/freebsd/ports/www/
nyxt, run

portclippy Makefile

Be aware, while these tools are generally quite helpful, they do not catch all mistakes and they
can occasionally make ill-advised suggestions. Another useful tool is portfmt. As the name
suggests, it can help with formatting your port’s Makefile.

portfmt -D Makefile

Testing with Poudriere
Section 3.4 of the Porter’s Handbook describes steps to test your port. It also refers readers

to Chapter 10, which includes a guide for setting up poudriere, FreeBSD’s bulk package build-
er and port tester. That section describes the merits of testing with poudriere. “[Various] tests
are done automatically when running poudriere testport. It is highly recommended that every
ports contributor install and test their ports with it.” That Chapter of the Porter’s Handbook de-
scribes a few different ways to set up a ports tree for poudriere. When you reach that section,
it makes sense to tell poudriere to use our existing ports tree with

poudriere ports -c -m null -M ~/freebsd/ports

The -m option tells poudriere to use the null method, i.e., use an existing ports tree found at
the location specified as the argument to -M. Using the null method means that we will manu-
ally manage the tree, including keeping it up-to-date and checking out the appropriate branch
when testing. Once you have poudriere set up, you can test your port. If you created a jail
named 13amd64, you can test the new port in that jail with

poudriere testport -j 13amd64 www/nyxt

Ideally you should test your port on the various tier 1 platforms (currently 12i386, 12amd64,
13amd64, and 13arm64). To test your new port after building it, poudriere can build a package
and leave the jail running with the package installed.

7 of 16

https://docs.freebsd.org/en/books/porters-handbook/book/#porting-testing
https://docs.freebsd.org/en/books/porters-handbook/testing/index.html
https://www.freebsd.org/cgi/man.cgi?poudriere
https://www.freebsd.org/platforms/

19FreeBSD Journal • January/February 2022

poudriere bulk -i -j 13amd64 <category>/<port>

It’s -i that instructs poudriere to leave the jail running with the package installed. This is useful
for testing terminal applications, but not graphical applications like nyxt.

If the port has OPTIONS, poudriere will test and build the package as the official package
builder will, i.e., with the default OPTIONS chosen. If you want to test or build the package
with non-default options, you can run

poudriere options -j 13amd64 www/nyxt

before poudriere testport... or poudriere bulk....
Poudriere also creates a repository that pkg can use to install packages. If you want to install

the package on the same system as poudriere, you have to configure pkg to use it. From PKG.
CONF(5), a local configuration can be placed under usr/local/etc/pkg/repos. The name
of the file is not important, but it must have a .conf suffix. To set a local repository configu-
ration and disable the default official repository configured in /etc/pkg/FreeBSD.conf,
create/usr/local/etc/pkg/repos/local.conf with

FreeBSD: {
 enabled: no
}
Poudriere: {
 url: “file:///usr/local/poudriere/data/packages/13amd64-default”
}

The path given above assumes poudriere’s default repository location, the repository based on
the 13amd64 jail, and the default ports tree.

If you want to serve packages to remote hosts, you will need to configure a web server.
Poudriere also has a web interface that can display information about current and past builds. If
your webserver is nginx, you can configure it to host poudriere’s interface and repository with a
server entry like this in nginx.conf.

server {
 listen 80 accept_filter=httpready;
 listen 443 ssl;

 server_name pkg.example.org;

 root /usr/local/share/poudriere/html;

 ssl_certificate /usr/local/etc/dehydrated/certs/example.org/fullchain.pem;
 ssl_certificate_key /usr/local/etc/dehydrated/certs/example.org/privkey.pem;

 # If you use dehydrated as a Lets Encrypt client
 location /.well-known/acme-challenge {

8 of 16

https://www.freebsd.org/cgi/man.cgi?pkg.conf(5)
https://www.freebsd.org/cgi/man.cgi?pkg.conf(5)

20FreeBSD Journal • January/February 2022

 alias /usr/local/www/dehydrated;
 }

 location /data {
 alias /usr/local/poudriere/data/logs/bulk;

 # Allow caching dynamic files but ensure they get rechecked
 location ~* ^.+\.(log|txz|tbz|bz2|gz)$ {
 add_header Cache-Control “public, must-revalidate, proxy-revalidate”;
 }

 # Don’t log json requests as they come in frequently and ensure
 # caching works as expected
 location ~* ^.+\.(json)$ {
 add_header Cache-Control “public, must-revalidate, proxy-revalidate”;
 access_log off;
 log_not_found off;
 }

 # Allow indexing only in log dirs
 location ~ /data/?.*/(logs|latest-per-pkg)/ {
 autoindex on;
 }

 break;
 }

 location /repo {
 alias /usr/local/poudriere/data/packages;
 autoindex on;
 }
}

If you want to display poudriere’s package building logs in the browser, tell nginx about text
files with a .log suffix by editing the text/plain line in Nginx’s mime.types to contain

text/plain log txt;

After restarting nginx with service nginx restart, point your browser to http://pkg.ex-
ample.org to see poudriere’s web interface.

Rewriting History to Prepare for Review
Before sharing your work, the commit history should be well organized, including the com-

mit logs and the number of commits. Suppose the history on your nyxt branch contains seven
WIP (work in progress) commits.

9 of 16

21FreeBSD Journal • January/February 2022

% git log --oneline
061be9ca5d98 (HEAD -> nyxt) www/nyxt: (WIP) ready for testing
cddad2b5886b www/nyxt: (WIP) Add missing www/Makefile entry
e42f79383312 www/nyxt: (WIP) Add build and install targets
807099e08e33 www/nyxt: (WIP) Fix QL_DEPENDS
3cc5f266b434 www/nyxt: (WIP) Complete _DEPENDS
80d098cd8367 www/nyxt: (WIP) Add license information
9ec91c5fb244 www/nyxt: (WIP) First attempt to port Nyxt browser
9f77e9601564 (freebsd/main, freebsd/HEAD, main) net-im/toxic: upgrade to v0.11.2

The commits above the freebsd/main, freebsd/HEAD, and main pointers are those in your
nyxt branch that you want to clean up.

git rebase -i main

will show a log of the commits in your local nyxt branch. The -i option means the rebase will
be interactive. We specify the commit preceding the subset of commits we wish to modify. In
this case it is easiest to specify that commit with the main pointer. We could have also used til-
de syntax, i.e., HEAD~7 which means seven commits before HEAD, but it’s tedious to count the
seven commits.

This is what you should see in your editor.

pick 9ec91c5fb244 www/nyxt: (WIP) First attempt to port Nyxt browser
pick 80d098cd8367 www/nyxt: (WIP) Add license information
pick 3cc5f266b434 www/nyxt: (WIP) Complete _DEPENDS
pick 807099e08e33 www/nyxt: (WIP) Fix QL_DEPENDS
pick e42f79383312 www/nyxt: (WIP) Add build and install targets
pick cddad2b5886b www/nyxt: (WIP) Add missing www/Makefile entry
pick 061be9ca5d98 www/nyxt: (WIP) Ready for testing

Rebase 9f77e9601564..061be9ca5d98 onto 9f77e9601564 (7 commands)

Commands:
p, pick <commit> = use commit
r, reword <commit> = use commit, but edit the commit message
e, edit <commit> = use commit, but stop for amending
s, squash <commit> = use commit, but meld into previous commit
f, fixup [-C | -c] <commit> = like “squash” but keep only the previous
commit’s log message, unless -C is used, in which case
keep only this commit’s message; -c is same as -C but
opens the editor
x, exec <command> = run command (the rest of the line) using shell
b, break = stop here (continue rebase later with ‘git rebase --continue’)
d, drop <commit> = remove commit
l, label <label> = label current HEAD with a name

10 of 16

22FreeBSD Journal • January/February 2022

t, reset <label> = reset HEAD to a label
m, merge [-C <commit> | -c <commit>] <label> [# <oneline>]
. create a merge commit using the original merge commit’s
. message (or the oneline, if no original merge commit was
. specified); use -c <commit> to reword the commit message

These lines can be re-ordered; they are executed from top to bottom.

If you remove a line here THAT COMMIT WILL BE LOST.

However, if you remove everything, the rebase will be aborted.

The history is written so that older commits are at the top. The comments below list all the
commands we can use. We instruct Git on to how to modify history by placing these com-
mands next to the commits. The default command beside each commit is pick, i.e., keep the
commit as is. Here, we want to squash these WIP commits into a single commit for review. To
squash the six latest commits into the first commit, change the pick command to squash in
these bottom six commits.

pick 9ec91c5fb244 www/nyxt: (WIP) First attempt to port Nyxt browser
squash 80d098cd8367 www/nyxt: (WIP) Add license information
squash 3cc5f266b434 www/nyxt: (WIP) Complete _DEPENDS
squash 807099e08e33 www/nyxt: (WIP) Fix QL_DEPENDS
squash e42f79383312 www/nyxt: (WIP) Add build and install targets
squash cddad2b5886b www/nyxt: (WIP) Add missing www/Makefile entry
squash 061be9ca5d98 www/nyxt: (WIP) Ready for testing

When you save and quit your editor, Git will complete the rebase, then show you the log mes-
sages in your editor, so that you can write a new log message for the new, single commit. Here
is an example commit message that we might want to use when sharing our work with others
for review.

www/nyxt: New port for the Nyxt browser

Nyxt is a keyboard-driven web browser designed for power users.
Inspired by Emacs and Vim, it has familiar key-bindings and is
infinitely extensible in Lisp.
WWW: https://nyxt.atlas.engineer/

Refer to the November 2020 Journal article for a deeper discussion on Writing Good FreeBSD
Commit Messages. Now git log --oneline will show a single commit in our nyxt branch.

7392483f6147 (HEAD -> nyxt) www/nyxt: New port for the Nyxt browser
9f77e9601564 (freebsd/main, freebsd/HEAD, main) net-im/toxic: upgrade to v0.11.2

11 of 16

https://freebsdfoundation.org/wp-content/uploads/2020/11/Writing-Commit-Messages.pdf
https://freebsdfoundation.org/wp-content/uploads/2020/11/Writing-Commit-Messages.pdf

23FreeBSD Journal • January/February 2022

Another way we will want to rewrite the history is by rebasing our work in the nyxt branch on
top of an up-to-date main branch. First update the main branch.

git checkout main
git pull

Then switch back to the nyxt branch and tell Git to do the rebase.

git checkout nyxt
git rebase main

If all goes well, git log will show your commits in the nyxt branch descending from the lat-
est commits from the main branch. If conflicting changes were made in freebsd/main and
your nyxt branch, Git will inform you which files have conflicts and give you the opportunity to
manually resolve them.

~/freebsd/ports [nyxt|✔] % git rebase main
Auto-merging www/Makefile
CONFLICT (content): Merge conflict in www/Makefile
error: could not apply 531d9081dfb1... Add new entry for nyxt browser
hint: Resolve all conflicts manually, mark them as resolved with
hint: “git add/rm <conflicted_files>”, then run “git rebase --continue”.
hint: You can instead skip this commit: run “git rebase --skip”.
hint: To abort and get back to the state before “git rebase”, run “git rebase
--abort”.
Could not apply 531d9081dfb1... Add new entry for nyxt browser

We can see the conflict is in www/Makefile and Git tells us what options we have to resolve
the conflict manually. Here is an example of what we might see in www/Makefile

<<<<<<< HEAD
SUBDIR += nyan
||||||| parent of 531d9081dfb1 (Add new entry for nyxt browser)
=======
SUBDIR += nyxt
>>>>>>> 531d9081dfb1 (Add new entry for nyxt browser)

In this case, it is straightforward to manually fix the conflict. We want to add our entry for nyxt
below the new entry for nyan. After editing the file so it looks like

SUBDIR += nyan
SUBDIR += nyxt

tell Git that we are ready to continue with

12 of 16

24FreeBSD Journal • January/February 2022

git add www/Makefile
git rebase --continue

Rebasing your feature branch onto an updated main branch is something you will do often
enough that you may want to use a convenience script to do it in one step. Here is a simple ex-
ample. Run rum from the feature branch to do the rebase in one step.

#!/bin/sh

rum, r_ebase onto u_pdated m_ain

Usage: rum

globals expected in ${HOME}/.ports.conf with sample values
No leading / on directory names means they are relative to $HOME
portsd=/usr/home/ashish/ports # ports directory

. “$HOME/.ports.conf”

usage () {
 cat <<EOF 1>&2
Usage: ${0##*/}
EOF
}
main
[$# != 0] && { usage; exit 1; }

[-n “${portsd##/*}”] && portsd=”${HOME}/$portsd”

current branch
cb=”$(git -C “$portsd” branch --show-current)”

if [-z “$cb”]; then
 printf “Could not determine the current branch.\\”
 exit 1
elif [“$cb” = “main”]; then
 printf “The main branch is checked out.\\n”
 exit 1
fi

git -C “$portsd” checkout main && \
 pull && \
 git -C “$portsd” checkout “$cb” && \
 git rebase main

13 of 16

25FreeBSD Journal • January/February 2022

Submitting Work for Review
Now we are ready to submit our work for review. FreeBSD currently has two ways to do

this. Bugzilla is used for submitting bugs and Phabricator is used for reviewing source code
changes. Both accept patches, but Phabricator has helpful features that are missing from Bug-
zilla, such as allowing reviewers to add comments specific to one or more lines of the patch. To
cover both methods, let’s create a review in Phabricator, then a new bug in Bugzilla that points
to the Phabricator review.

FreeBSD Phabricator Reviews
To begin using FreeBSD’s Phabricator instance for code review at https://reviews.freebsd.org,

you must first create an account, then install the arcanist command line tool.

pkg install arcanist-php80

Set up ~/.arcrc with the required certificates by running

arc install-certificate https://reviews.freebsd.org

and follow the instructions. Next, configure Arcanist to use https://reviews.freebsd.org as the
default URI.

arc set-config default https://reviews.freebsd.org/

To submit your review, from the nyxt branch run

arc diff --create main

This will create a new review with all the commits in the nyxt branch. In this example, we
squashed our commits into a single commit, so the revision will be created with that single
commit. When your editor opens, you will have the opportunity to edit the fields that are part
of the revision. The top line will be the subject of your commit log, www/nyxt: New port for
the Nyxt browser and the summary will contain the rest of the commit log. Under test plan,
you can list what you did to test the port. For example, if you did poudriere testport for
each of the supported versions on the tier 1 architectures, you could write

poudriere testport 12/13 amd64/aarch64

You must also add at least one reviewer. If you have one or more ports committers that you
have been working with, you can add their usernames here. For example

Reviewers: ashish rene

You can also specify group reviewers, which are of the form #group_name such as #ports_
committers. The Subscribers: field, like Reviewers: takes a list of users, but these users do not
reject or approve your work. When reviewers request changes, you can update the revision with

14 of 16

https://bugs.freebsd.org/
https://reviews.freebsd.org/
https://reviews.freebsd.org/
https://reviews.freebsd.org/auth/register/
https://reviews.freebsd.org

26FreeBSD Journal • January/February 2022

arc diff --update <revision>

where <revision> is the revision ID and takes the form DXXXXX. It can be found in the email
sent to your address when you created the revision. For example, if your revision is found at
https://reviews.freebsd.org/D33314, then use D33314 as <revision>.

Submitting Bugzilla Bug Reports
To create a new Bugzilla bug, point your browser to https://bugs.freebsd.org and click the

New link at the top of the page. If you are not logged in to the FreeBSD Bugzilla instance, you
will be prompted to do so. If you do not have a FreeBSD Bugzilla account, you can use the link
on the login page to create a new one.

From here, you choose the Ports & Packages link since we are creating a new port and
choose Individual Port(s) for the Component. For ports-specific bugs, the bug’s subject
line can be the commit subject prefixed with [NEW PORT], i.e., [NEW PORT] www/nyxt: New
port for the Nyxt browser. If the port isn’t new, the category/port prefix will automati-
cally assign the bug to the maintainer of the port. In the description you can add the rest of the
commit message and any other information helpful for others reading the bug. If you created a
Phabricator review, add it to See also.

When your new port is accepted and pushed to git.freebsd.org/ports.git, your new
job as the maintainer of the port begins. For an outline of the responsibilities of port maintain-
ers, refer to the The challenge for port maintainers article. To keep up-to-date with upstream,
portscout is a helpful service to alert you when there is a new release, so you can submit a
port update. If upstream uses GitHub, you can also be alerted to new releases by following the
Watch and Custom links, then check Releases on the project’s page. When it’s time to update
your port and the changes are simple (e.g., only DISTVERSION/distinfo changes), submitting a
Phabricator review may not be necessary. From a Git feature branch, you can create a patch us-
ing git format-patch main and attach it to a new Bugzilla bug. With Git, we now have more
flexibility when crediting contributors for their work. When you submit a patch this way and a
committer pushes it to git.freebsd.org/ports.git, git log will give you credit for your work.
Even if you submit a traditional diff, committers have the option to set you as the author.

Opinionated Conclusions
Change can be hard. Many FreeBSD developers and contributors who dedicated signifi-

cant time to becoming productive using Subversion were reluctant to change to a new version
control system, especially one so fundamentally different. We lost some practical features like
simple, monotonically increasing commit revisions and deterministic history retention when di-
rectories and files are moved within the repository. However, after three quarters of year, most
indications suggest developers and the wider community are pleased and productive with the
change. It is difficult to isolate the cause of certain outcomes, but the number of commits to
the ports tree from the conversion date until the time of writing, 2021-04-06 to 2021-12-31
is 29,238. This is 1,748 more than the number for the same time last year. Let’s hope this is a
continuing trend in contributions to the ports tree.

JOE MINGRONE is a FreeBSD ports developer and works for the FreeBSD Foundation. He lives
with his wife and two cats in Dartmouth, Nova Scotia, Canada.

15 of 16

https://reviews.freebsd.org/D33314
https://bugs.freebsd.org/
https://docs.freebsd.org/en/articles/contributing/#maintain-port
https://portscout.freebsd.org/
http://git.freebsd.org/ports.git

27FreeBSD Journal • January/February 2022

I
n 2012, I worked as an IT Systems Administrator for Nevosoft, a small game developer that
had the entire server infrastructure developed on the base of the FreeBSD OS. At that time,
no one knew about Kubernetes and Docker, but by virtue of the FreeBSD Jail, the company’s
servers benefitted by having all the components separated and each service used an inde-

pendent Jail container. Nowadays, FreeBSD boasts a dozen (or even more) container orchestra-
tion programs, although in 2012, there was not a wide choice. ezjail was available, but it was
a solution for a Standalone Server. Our installation had thirty to forty physical servers, each
of which launched from ten to twenty containers. Except for the primitive create actions, de-
leting, launching, and cloning containers, the company’s system administrators needed more
advanced capabilities, such as container management on remote servers, container migration
from one server to another, and the ability to save a container as a portable image. Those re-
sults were achieved by creating simple shell scripts. In 2013, however, the necessity of applying
the proprietary software on the servers caused the company to begin the migration process
to Linux. Because by this time, all created shell scripts were on a par with ezjail in the sense of
their capabilities, and in certain instances, they added unique features (for example, there was
initially the TUI—text-based user interface), a decision was made to combine the scripts collec-
tion and publish them in the FreeBSD Ports Tree under the same title. This was the beginning
of the CBSD Project.

Comparison with Other Management Systems
Today, FreeBSD supports at least thirty titles of utilities for managing containers and virtual

machines. There is bhyve on the FreeBSD platform and from there the list grows steadily lon-
ger. 2022 marks CBSD’s decennary—it is kept current and continues to expand. Thus far, this is
one of the oldest virtual environment management systems on the FreeBSD platform. The vir-
tual environments are not only intended to mean containerizing based on jail, but also support
for virtual machines based on bhyve, XEN and QEMU / NVMM hypervisors.

The development was based on the following concepts and philosophy:
• Focus both on single-mode installations and on those consisting of multiple hosts;
• Have the opportunity to integrate with other solutions;
• Be open for changes and think in big-picture terms: the bigger idea, the larger the poten-

tial; whereas small ones usually do not lend themselves to growth;
• Remain simple and flexible in-use.

BY OLEG GINZBURG

1 of 12

CBSD
Part 1–Production

https://company.nevosoft.com/en/
https://bhyve.org/

28FreeBSD Journal • January/February 2022

“Simplicity is the ultimate sophistication” – Leonardo da Vinci

A wide range of tool kits have sprung up around CBSD: web interface, message broker service
for delivering tasks to distributed CBSD nodes, API service, and thin client for working with it.

Finally, CBSD is a native FreeBSD product, not a Linux solution porting attempt.
Learn more about the project objective: https://www.bsdstore.ru/en/cbsd_goals_ssi.html
Learn more about the project development: https://www.bsdstore.ru/en/cbsd_history_ssi.html

Child Projects
CBSD is not only a product for the end user, but also one of the elements involved in com-

plex solutions building that can save a lot of person-hours by delegating functions for creating
and managing CBSD virtual environments. As follows, there are various self-contained projects
and distributions for demonstration and gaining insights into the re-use of CBSD work:

• Reggae (developed by Goran Mekić) uses CBSD for DevOps tasks automation;
• The distribution kit https://k8s-bhyve.convectix.com/ (k8s-bhyve) shows the ability to

quickly (from a few seconds to 1 minute) launch Kubernetes Clusters set up on a bhyve
hypervisors;

• The distribution kit https://clonos.convectix.com/ has the ability to construct a WEB/UI in-
terface over CBSD for creating containers and virtual machines bhyve;

• The distribution kit https://myb.convectix.com/ (MyBee) enables work with cloud images
through CBSD without using the UI and CLI: it is possible to get virtual machines having
sent one request to the CBSD API using an HTTP request (for example, through the use
of the curl utility) or using the nubectl thin client (https://github.com/bitcoin-software/nu-
bectl).

CBSD and Jail Container: Practical Application
Let’s get better acquainted with available CBSD jail operation methods. The site has a de-

scription of the initial CBSD installation and customization process, and we have assumed that
you already have the run-time version. There are various ways to set up containers:

Option 1: in the command line dialog format. This method does not require learning a vari-
ety of possible jail parameters because the script will recall them:

cbsd jconstruct

2 of 12

https://en.wikipedia.org/wiki/Message_broker
https://www.bsdstore.ru/en/cbsd_goals_ssi.html
https://www.bsdstore.ru/en/cbsd_history_ssi.html
https://github.com/cbsd/reggae
https://github.com/mekanix
https://k8s-bhyve.convectix.com/
https://clonos.convectix.com/
https://myb.convectix.com/
https://github.com/bitcoin-software/nubectl
https://github.com/bitcoin-software/nubectl

29FreeBSD Journal • January/February 2022

Option 2: in dialogue format through TUI. This option is also appropriate for beginners, as—in
line with the first option—knowledge of possible arguments and commands is not required:

cbsd jconstruct-tui

The output of both dialogs is the text configuration file generation with the collection of
parameters for the jcreate script, which you can call directly from the TUI interface or command
line.

Option 3: Using a configuration file or command-line arguments.
Compared to the previous methods, this one is complicated in that it requires knowledge of

the configurable parameters’ names, but it is adequate for automation of environments devel-
opment. You can synthesize a configuration file template as follows:

jname=”myjail1”
ver=13.0
baserw=0
pkglist=”misc/mc shells/bash”
astart=0
ip4_addr=”DHCP”
...

Launch: cbsd jcreate jconf=<path_to_file>
Also, it is possible to specify the options as arguments without the configuration file:

cbsd jcreate jname=myjail1 ver=13.0 baserw=0 pkglist=”misc/mc
shells/bash” astart=0 ip4_addr=”DHCP”

The configuration file and arguments can be combined:

cbsd jcreate jconf=<path_to_file> ip4_addr=”10.0.0.2” runasap=1

Option 4: Vagrant-like style: CBSDfile.
This is another notation for describing CBSD virtual environments allowing both: describe contain-

er settings and operate customization while creating (for example, copy files to the container file sys-
tem and configure the service). Notwithstanding the fact that in one CBSD file you can describe an
infinite number of environments, create and delete them by calling cbsd up and cbsd destroy,
this form of notation is user friendly for a certain directory structures having one directory describing
only one environment, for example: https://github.com/cbsd/cbsdfile-recipes/tree/master/jail

3 of 12

https://www.vagrantup.com/
https://github.com/cbsd/cbsdfile-recipes/tree/master/jail

30FreeBSD Journal • January/February 2022

Also, the distinctive capability of environments created through the CBSD file format is not
with local environments and through the CBSD API.

Jail Templates
We will not dwell upon the typical containers working operations, since they are described

on the site. We’ll go over some innovations of the CBSD project aimed to easily reference in
jail—in particular, working with container templates. Templates are methods of the contain-
er description and configuration. As for the container, it can be exported to a portable image.
A container can contain a standard runtime environment, but in most cases, they are used for
services/application isolation and distribution through an image. There are advantages and dis-
advantages of this. Some of the advantages of the container approach are the speed of service
deployment, no effect on the basic system environment, and the capability to commit the ver-
sions of dependencies with which your application is fully operational.

Referring to disadvantages of this approach, there is the issue of security, especially when
using a container or image without a self-contained build script (template). This makes an op-
erational software update to a container difficult (for example, to fix 0-day vulnerabilities) and
it makes backdoors more likely to occur that are intentionally or accidentally left by image col-
lectors. Considering the complexity of installing certain software, it is not unusual to find a con-
tainer with a configured service hand-emplaced or with a lost assembly instruction.

Another disadvantage is the complexity of configuring services to the containers. Some im-
ages maintain the capability to configure a limited number of parameters through the environ-
ment variables, though not always sufficient. One of the examples is dynamic configurations,
in the case of a need to add and configure multiple virtual hosts (vhost) for the WEB server
and setup several databases in the DBMS. For such tasks, there is a specific software segment
called configuration management. The best known products in this category are Ansible, Chef,
Puppet, Rex, SaltStack. However, it is general practice that they are all optimized for work in
classic environments. CBSD can combine the full power of configuration managers and a con-
tainer-based approach to get containers with management services. There are two kinds of
templates used in CBSD:

• static (classic), basically including install software only. An example of such a template for
CBSD is the sambashare container.

Similar templates can be found in other projects: for instance, the nginx template through
the example of Fockerfile (focker project):

base: freebsd-latest

steps:
 - run:
 - ASSUME_ALWAYS_YES=yes IGNORE_OSVERSION=yes pkg install nginx

Or here’s an example of the RabbitMQ template for the BastilleBSD project, where the CMD
file content is:

service rabbitmq restart

4 of 12

https://www.bsdstore.ru/en/cbsd_api_ssi.html
https://www.bsdstore.ru/en/docs.html
https://en.wikipedia.org/wiki/Zero-day_(computing)
https://www.ansible.com/
https://www.chef.io/
https://puppet.com/
https://www.rexify.org/
https://saltproject.io/
https://github.com/sadaszewski/focker/tree/8be1fcaf601cca6afd703f96b1f90946a9831ff3/example/gateway/nginx-http
https://github.com/sadaszewski/focker
https://github.com/BastilleBSD-Templates/rabbitmq/tree/e1a1275090c3d47b38402ab73941afb3c33cf3a6
https://bastillebsd.org/

31FreeBSD Journal • January/February 2022

PKG file content:

rabbitmq
python27

These templates are of limited usefulness, as this is an alternate form of writing two lines
in shell:

pkg install -y rabbitmq python27
service rabbitmq restart

There are more complex templates that cover the copies of the service configuration files
and, in some cases, those followed by accompanied processing through complex structures
from sed/awk while container configuration.

As a general principle:
a) This is an irreversible operation and designed for one-time operation: there’s no way to

roll back or change the configuration without re-creating the container;
b) such templates are highly demanding for their maintenance: even after a minor service

update in the container, the source configuration file can be substantially changed;
c) there is no guarantee that the service will be operable, or, in the case of configurator

error, that it will roll back to the previous run-time version;
d) it’s a difficult line to draw between sed/awk operating and switching from it to use config

management programs.
Here is the solution to the problem and the main CBSD project message: do not reinvent the

wheel, but re-use someone else’s work whenever you can. Many developers maintain configu-
ration management modules, so we recommend that for reasons of saving time you use their
work for delegating configuration with utilities that are native for this. With this objective in
view, the forms script has been included in CBSD since 2016. The CBSD Forms functions are to
get and save user parameters in the YAML format in the form appropriate for the configuration
module—a peculiar kind of middleware. Puppet was chosen as the configuration manage-
ment system, but any other framework can be used.

Preparing CBSD for Using Templates
To put things into perspective, let’s create a jail1 container and apply the redis service tem-

plate to it.
As it stands, it is expected that CBSD is installed and set up correctly: you can run a contain-

er and the cbsd dhcpd command gives a client the addresses that have access to the Internet
(for example through NAT)--this is a necessary criterion for pkg operation and packages instal-
lation in the container.

1) Git must be installed for the CBSD plug-in installation from the public repository https://
github.com/cbsd. Install git (~220 MB) or its light version - git-lite (~40 MB), if you have not yet
done so:

pkg install -y git-lite

5 of 12

https://www.bsdstore.ru/en/13.0.x/wf_imghelper_ssi.html
https://en.wikipedia.org/wiki/YAML
https://redis.io/

32FreeBSD Journal • January/February 2022

2) Create the system container cbsdpuppet1 from the profile included in the base distribu-
tion of CBSD. This is done once on each new CBSD host:

cbsd jcreate jname=cbsdpuppet1 jprofile=cbsdpuppet

The cbsdpuppet1 container should not be run, as it fulfils one function—it contains the pup-
pet7 installed package used by CBSD to configure containers.

3) Install the CBSD puppet module—this is optional functionality and is not included in the
basic distribution. The module contains the puppet modules checked by the CBSD project. This
is done once on each new CBSD host:

cbsd module mode=install puppet

4) Install the module for the redis service configuration. This is done once on each new
CBSD host:

cbsd module mode=install forms-redis

5) Create a container with any arbitrary name where we are about to get the redis service,
for example: jail1:

cbsd jcreate jname=jail1 runasap=1

(Note: the runasap=1 argument means the container will be run immediately).

6) And the last step: pick up the redis service template to our jail1 container:

cbsd forms module=redis jname=jail1

There will be the familiar TUI interface with the parameters of the Redis module which can
be configured at your discretion:

Let’s retain the default arguments and pick them by the [COMMIT] operation. It may take a
while before the script will finish running (depending on the Internet connection speed, since
the module installs the redis server from the official repository pkg.FreeBSD.org) so you’ll have
to double check that the service in the container is installed and operating:

6 of 12

https://www.freshports.org/sysutils/puppet7/
https://www.freshports.org/sysutils/puppet7/
https://forge.puppet.com/modules/puppet/redis

33FreeBSD Journal • January/February 2022

~ # cbsd jexec jname=jail1 sockstat -4l
USER COMMAND PID FD PROTO LOCAL ADDRESS FOREIGN ADDRESS
redis redis-serv 8910 7 tcp4 172.16.0.13:6379 *:*

By re-using the cbsd forms call, you can reconfigure the service at any time. Moreover, the
forms hold the previous values and always output current data during initialization. For exam-
ple, let’s change an array of parameters:

• set the port to 7777;
• set up a password to connect to redis server;
• set the maxmemory parameter to 4g;
• set the maxmemory_policy parameter to noeviction.
Check on the state after the new parameter’s application:

~ # cbsd jexec jname=jail1 sockstat -4l
USER COMMAND PID FD PROTO LOCAL ADDRESS FOREIGN ADDRESS
redis redis-serv 12587 7 tcp4 172.16.0.13:7777 *:*

~ # cbsd jexec jname=jail1 grep ^maxmemory /usr/local/etc/redis.conf
maxmemory 4g
maxmemory-policy noeviction

Most Puppet modules commit to incorrect data validation, the configuration file validation,
the service state. Therefore, the chance of getting a non-serviceable service due to invalid pa-
rameter input is considerably less than with statical templates.

Now that we’ve gotten to know the TUI interface, let’s turn to automation. The cbsd forms
permit acceptance of the parameters for a template through environment variables dispensing
with interactive dialogs. In order to see what variables a particular template accepts, use the
vars argument with indication of the desired module:

~ # cbsd forms module=redis vars
H_BIND H_PORT H_REQUIREPASS H_MAXMEMORY H_MAXMEMORY_POLICY
H_TCP_KEEPALIVE H_LOG_LEVEL H_SYSLOG_ENABLED H_TIMEOUT H_SLAVE_PRIORITY
H_SLAVEOF

Forms add the H_ prefix to the names of regular parameter to cut the likelihood of potential
conflicts with global variables of the system. Let’s reconfigure the redis port the third time (set
it to the value of 9999), but not in an interactive mode (inter=0):

env H_PORT=9999 cbsd forms module=redis jname=jail1 inter=0

7 of 12

34FreeBSD Journal • January/February 2022

Give attention to the output of values in applying the template:

This is an informational output of the exported CBSD variables as a result of the module’s
work. The parameterization format can be set by mask through the configuration file
forms_export_vars.conf in the directory ~cbsd/etc.

Look into its default value:
https://github.com/cbsd/cbsd/blob/v13.0.18/etc/defaults/forms_export_vars.conf
These values can be automatically exported to a file or various Service Discovery services

such as Consul. In this case, your cluster gets these values automatically, which can be used to
build a SOA (Service Oriented Architecture), but that’s a theme for another time.

Along with redis, here are other templates for services configuration: repositories named
modules-forms-XXXX. For example, try to use these templates:

• modules-forms-memcached
• modules-forms-mysql
• modules-forms-grafana
• modules-forms-rabbitmq
• modules-forms-postgresql
• modules-forms-elasticsearch
Note: regardless of the conventional 1 service-1 container concept, in regard to the CBSD

forms you can apply multiple templates to the same environment, having gotten all services in
it at once.

How It Works
The Puppet modules (or any other similar system) contain the parameters that in 99% of

cases have the value parameter form and are usually parameterized in YAML format. For user
convenience, CBSD offers a TUI interface for working with basic forms, where, in a similar man-
ner to HTML forms, the following elements can exist:

• radio button (the boolean type’s values are true/false, yes/no);
• checkbox elements;
• dropdown menu of known certain values;
• the custom inputbox for relative user input;
To hold parameters in a universal form, CBSD forms uses the SQLite3 database—a describ-

ing form for the parameters input which stores the input value. The recording (writing) format
is universal and serves for both TUI dialogs autogeneration (CBSD forms) and WEB/HTML forms
(ClonOS), as the following examples clearly show. Let’s create a SQLite3 database using the for-
mat required by CBSD forms:

8 of 12

https://github.com/cbsd/cbsd/blob/v13.0.18/etc/defaults/forms_export_vars.conf
https://www.consul.io/
https://github.com/cbsd
https://www.sqlite.org/index.html
https://clonos.convectix.com/

35FreeBSD Journal • January/February 2022

sqlite3 /tmp/myforms.sqlite <<EOF
BEGIN TRANSACTION;
CREATE TABLE forms (idx INTEGER PRIMARY KEY AUTOINCREMENT, mytable
VARCHAR(255) DEFAULT , group_id INTEGER DEFAULT 1, order_id INTEGER
DEFAULT 1, param TEXT DEFAULT NULL, desc TEXT DEFAULT NULL, def TEXT
DEFAULT NULL, cur TEXT DEFAULT NULL, new TEXT DEFAULT NULL, mandatory
INTEGER DEFAULT 0, attr TEXT DEFAULT NULL, xattr TEXT DEFAULT NULL, type
VARCHAR(255) DEFAULT inputbox, link VARCHAR(255) DEFAULT , groupname
VARCHAR(128) DEFAULT);

INSERT INTO forms (
mytable,group_id,order_id,param,desc,def,cur,new,mandatory,attr,type,link,
groupname) VALUES (“forms”, 1,0,”-”,”BSDMag poll: favorite BSD stuff
on”,-,,,1, “maxlen=128”, “delimer”, “”, “”);
INSERT INTO forms (
mytable,group_id,order_id,param,desc,def,cur,new,mandatory,attr,type,link,
groupname) VALUES (“forms”, 1,1,”FreeBSD”,”enter favorite FreeBSD tools,
e.g: sysrc”,bsdinstall,,,1, “maxlen=60”, “inputbox”, “”, “”);
INSERT INTO forms (
mytable,group_id,order_id,param,desc,def,cur,new,mandatory,attr,type,link,
groupname) VALUES (“forms”, 1,2,”DragonFlyBSD”,”enter favorite DFLY
tools. e.g: checkpoint”,checkpoint,,,1, “maxlen=60”, “inputbox”,
 “”, “”);

CREATE TABLE system (helpername TEXT DEFAULT NULL, helperdesc TEXT
DEFAULT NULL, version INTEGER DEFAULT 0, packages INTEGER DEFAULT 0,
have_restart INTEGER DEFAULT 0, longdesc TEXT DEFAULT NULL, title TEXT
DEFAULT);
INSERT INTO system VALUES(bsdmag,NULL,201607,,,,);
COMMIT;
EOF

And let’s talk more about some of these lines. For us, the most important table columns are:
* param – the parameter-name directly, the value of which we want to get;
* desc – its relevant description, where appropriate;
* def – the default value;
* new – new value inputted by the user;
* type – type of a field: inputbox, delimiter, password, group_add, group_del, radio, check-

box.
Two parameters can be added in the next two lines, and the values we want to get are:

FreeBSD and DragonFlyBSD, each having its own default value and both have the inputbox field
format, so users are free to enter an arbitrary string value.

Run the cbsd forms script on this form:

cbsd forms formfile=/tmp/myforms.sqlite

9 of 12

36FreeBSD Journal • January/February 2022

The output will be a dynamically built form for working with parameters:

The form structure for the redis service is more complex as it contains the field elements of
boolean and dropdown types. Let us look at the table:

We take as our example the table memory_policy_select, the memory_policy parame-
ter variation table of the select type:

10 of 12

http://clonos.bsdstore.ru:81/phpliteadmin.php?database=%2Fusr%2Fjails%2Fvar%2Fdb%2Fredis.sqlite&table=memory_policy_select&fulltexts=0&numRows=30&action=row_view

37FreeBSD Journal • January/February 2022

In the WEB interface, the auto-generated form (the screenshot was taken from ClonOS)
looks like this:

Where the maxmemory policy parameters are in a specific dropdown element:

The TUI interface offers a similar choice:

Note: all CBSD TUI dialogs can be described by similar SQL-based forms which are currently
used only for work with templates.

After getting and processing the parameters, after the cbsd forms, the cbsd puppet module
intervenes in proceedings. Here’s what happens next:

• the overlay file system mounting (having used nullfs) of the puppet7 package files from
the cbsdpuppet1 system container to the /tmp/XXX directory to the destination container
(jail1);

• YAML file presentation with parameters for the module to the destination container (jail1);
• fetching the puppet apply instruction to the configurable container (jail1) to apply the pup-
pet manifest from the /tmp/XXX directory.

11 of 12

https://www.freebsd.org/cgi/man.cgi?query=nullfs&sektion=5

38FreeBSD Journal • January/February 2022

For example, this is what the nullfs mounting points look like when parameters are applied:

Upon completion and reconfiguration of the service, temporary nullfs file systems are dis-
mounted as superfluous. Therefore, if we look at the installed software in the jail1 container
from the example above, there would not be the puppet7 package or the files it depends on.

~ # cbsd jexec jname=jail1 pkg info
pkg-1.17.4 Package manager
redis-6.2.6 Persistent key-value database

Stating the matter another way, with the use of the cbsdpuppet1 container, there is no need
to install puppet7 and the necessary dependencies in each container--the configuration appli-
cation is not dependent upon the presence (or absence) of any system software in a finite con-
tainer.

Epilogue
- cbsd forms is one of the most powerful capabilities of the CBSD framework when work-

ing with jail-based containers, forming a bridge between CBSD and configuration managers.
Accordingly, instead of the sed/awk scripts support and static templates, the CBSD project con-
tributes FreeBSD support to the appropriate Puppet modules, if it is out of support: if a module
can operate in a FreeBSD environment, you can use it via cbsd forms transparently. There are
benefits for particular CBSD users and all the Puppet users on FreeBSD in general. If you use
another configuration system, you can set the call of other systems by using the cbsd forms
script.

The CBSD project sustains oscillation and distribution of ready-to-use images based on exist-
ing templates, which you can use through the CBSD repository using cbsd repo and cbsd imag-
es. See inline documentation and examples:

~ # cbsd repo --help
~ # cbsd images --help

In the next of the series of articles, we’ll look at the virtual machine management capabilities
of CBSD.

OLEG GINZBURG lives in Russia and works as a DevOps engineer in the X5 Retail group. He
has been fond of computer science since the ZX Spectrum and is a Unix fan and FreeBSD en-
thusiast. He is a FreeBSD promoter and member of several projects: CBSD, ClonOS, MyB, K8S-
bhyve, and AdvanceBSD group.

12 of 12

https://x5.ru/en/
https://clonos.convectix.com/
https://myb.convectix.com/
https://k8s-bhyve.convectix.com/
https://k8s-bhyve.convectix.com/
https://www.reddit.com/r/AdvanceBSD/

39FreeBSD Journal • January/February 2022

The internet can be a lawless place, and our on-line services can be attacked in a variety of
ways. The firewalls we run can be part of the way we protect our systems, but it turns out
they can also be an avenue for attack themselves.

One way of attacking services is to exhaust system resources by pretending to open connec-
tions. This is commonly called a SYN flood, and it’s a fairly insidious attack. Let’s start by refresh-
ing our memories about how TCP connections work. Opening a TCP connection is a three-step
process:

1) SYN: the client sends a SYN packets to indicate it wishes to open a connection. It sets an
initial sequence number in the SYN packet.

2) SYN+ACK: the server responds, acknowledging the client sequence number, and settings its
own.

3) ACK: the client accepts that the connection is open, and acknowledges the server’s
sequence number.

When the server receives the initial SYN it will set up internal data structures to support the
new connection. This takes CPU time and memory.

This means that malicious clients can generate SYN packets (which are small, and easy to
generate), consuming much of the server’s available memory and CPU resources. Even worse,
it only requires the single SYN packet. There’s no need for the attacker to receive the server’s
SYN+ACK reply. That means that the source IP address can be faked, making these attacks dif-
ficult to filter out. They can also be targeted at the service’s main TCP port (e.g., 443 for a web
server), making the attack indistinguishable from real client requests.

SYN cookies
In 1996 Daniel J. Bernstein and Eric Schenk came up with a method to resist such attacks,

called SYN cookies. Simply put, SYN cookies ensure the server does not run out of memory by
not allocating any memory for the new connection when we receive a SYN packet.

We still generate a SYN+ACK reply, but wait to create server-side state until the client has
responded to our SYN+ACK with its own ACK. This ensures that the client really exists (i.e., the
source IP address is not spoofed).

The obvious issue with this is that we still need the information we’d normally save when
the SYN first arrives. This information includes things like Maximum Segment Size (MSS) and
Window Scale (WSCALE). While these options are … well optional, they are important for TCP
performance, and we don’t want to refuse them.

BY KRISTOF PROVOST

1 of 7

Porting OpenBSD’s
 pf syncookie Code
 to FreeBSD’s pf

40FreeBSD Journal • January/February 2022

Furthermore, we also need some way of ensuring that the acknowledgement number in the cli-
ent’s ACK matches the sequence number we used in the SYN+ACK message. If we didn’t check this,
malicious clients could simply send a SYN, wait a little while and send an ACK blind, that is, without
having to actually receive the server’s SYN+ACK using a random acknowledgement number.

So, how do we accomplish this? We do so by encoding all the options into the sequence
number of the SYN+ACK packet.

In the pf implementation, this is done in pf_syncookie_generate():

 uint32_t
 pf_syncookie_generate(struct mbuf *m, int off, struct pf_pdesc *pd,
 uint16_t mss)
 {
 uint8_t i, wscale;
 uint32_t iss, hash;
 union pf_syncookie cookie;

 PF_RULES_RASSERT();

 cookie.cookie = 0;

 /* map MSS */
 for (i = nitems(pf_syncookie_msstab) - 1;
 pf_syncookie_msstab[i] > mss && i > 0; i--)
 /* nada */;
 cookie.flags.mss_idx = i;

 /* map WSCALE */
 wscale = pf_get_wscale(m, off, pd->hdr.tcp.th_off, pd->af);
 for (i = nitems(pf_syncookie_wstab) - 1;
 pf_syncookie_wstab[i] > wscale && i > 0; i--)
 /* nada */;
 cookie.flags.wscale_idx = i;
 cookie.flags.sack_ok = 0; /* XXX */

 cookie.flags.oddeven = V_pf_syncookie_status.oddeven;
 hash = pf_syncookie_mac(pd, cookie, ntohl(pd->hdr.tcp.th_seq));

 /*
 * Put the flags into the hash and XOR them to get better ISS number
 * variance. This doesn’t enhance the cryptographic strength and is
 * done to prevent the 8 cookie bits from showing up directly on the
 * wire.
 */
 iss = hash & ~0xff;
 iss |= cookie.cookie ^ (hash >> 24);

 return (iss);
 }

2 of 7

41FreeBSD Journal • January/February 2022

The eagle-eyed reader will note that for both MSS and WSCALE we don’t actually encode
the correct value, but instead find the closest match in a lookup table. This reduces the number
of bits needed to encode the information, but still gets us a good approximation of the real val-
ue. Having a slightly smaller maximum segment size or window scale will cost us a little perfor-
mance, but not significantly so. The values are chosen so that the most frequently used MSS or
WSCALE values are represented, so for most clients there will be no performance loss at all.

This information is encoded into an authenticated hash. That is, to recreate the hash you
need both the input information (MSS, WSCALE, ...) and a secret key. In other words: attackers
cannot predict the result of the hash, and consequently cannot predict the sequence number
the server will choose. That’s handled by the pf_syncookie_mac() function:

 uint32_t
 pf_syncookie_mac(struct pf_pdesc *pd, union pf_syncookie cookie, uint32_t seq)
 {
 SIPHASH_CTX ctx;
 uint32_t siphash[2];

 PF_RULES_RASSERT();
 MPASS(pd->proto == IPPROTO_TCP);

 SipHash24_Init(&ctx);
 SipHash_SetKey(&ctx, V_pf_syncookie_status.key[cookie.flags.oddeven]);

 switch (pd->af) {
 case AF_INET:
 SipHash_Update(&ctx, pd->src, sizeof(pd->src->v4));
 SipHash_Update(&ctx, pd->dst, sizeof(pd->dst->v4));
 break;
 case AF_INET6:
 SipHash_Update(&ctx, pd->src, sizeof(pd->src->v6));
 SipHash_Update(&ctx, pd->dst, sizeof(pd->dst->v6));
 break;
 default:
 panic(“unknown address family”);
 }

 SipHash_Update(&ctx, pd->sport, sizeof(*pd->sport));
 SipHash_Update(&ctx, pd->dport, sizeof(*pd->dport));
 SipHash_Update(&ctx, &seq, sizeof(seq));
 SipHash_Update(&ctx, &cookie, sizeof(cookie));
 SipHash_Final((uint8_t *)&siphash, &ctx);

 return (siphash[0] ^ siphash[1]);
 }

With the resulting hash post-processed we have enough information to send the server’s
SYN+ACK response.

3 of 7

42FreeBSD Journal • January/February 2022

At this point pf processing stops. We do not create state, we do not perform any further ex-
amination of the packet. This also means that if the firewall protects a different host (i.e., it’s
running on a router between the client and server) the server will not even be aware that the
client has attempted to initiate a new connection. We want that because it means the server is
protected from SYN floods, without needing any code or configuration changes.

If the client never responds, nothing happens. The server has remembered nothing about
this specific SYN message and has no memory allocated to it. If on the other hand the client
does respond (i.e., is a legitimate client, at least for the purpose of this discussion), we must re-
construct the information we’ve not retained when we received the original SYN message.

Upon receiving a SYN+ACK message we first validate it in pf_syncookie_validate():

uint8_t
pf_syncookie_validate(struct pf_pdesc *pd)
{
 uint32_t hash, ack, seq;
 union pf_syncookie cookie;

 MPASS(pd->proto == IPPROTO_TCP);
 PF_RULES_RASSERT();

 seq = ntohl(pd->hdr.tcp.th_seq) - 1;
 ack = ntohl(pd->hdr.tcp.th_ack) - 1;
 cookie.cookie = (ack & 0xff) ^ (ack >> 24);

 /* we don’t know oddeven before setting the cookie (union) */
 if (atomic_load_64(&V_pf_status.syncookies_inflight[cookie.flags.oddeven])
 == 0)
 return (0);

 hash = pf_syncookie_mac(pd, cookie, seq);
 if ((ack & ~0xff) != (hash & ~0xff))
 return (0);

 counter_u64_add(V_pf_status.lcounters[KLCNT_SYNCOOKIES_VALID], 1);
 atomic_add_64(&V_pf_status.syncookies_inflight[cookie.flags.oddeven], -1);

 return (1);
}

We check that the cookie contains the correct authentication string. If it does, we contin-
ue into pf_syncookie_recreate(), where we reconstruct the original SYN packet. This isn’t
strictly required for the syncookie system itself, but we need to tell pf about the SYN packet
we’d originally discarded so it can create the relevant state entries.

This also allows pf to continue processing, and potentially forwards the reconstituted SYN
packet to the remote server. The remote server would then reply with its own SYN+ACK pack-
et, with a different sequence number from ours. pf will have to modify the sequence and ac-

4 of 7

43FreeBSD Journal • January/February 2022

knowledgement numbers on all traffic between client and server. Happily, this is standard func-
tionality for pf.

At this point the connection is fully established on both sides, and it does not meaningfully
differ from a connection set up without syncookies. No special action is taken on connection
shutdown because this does not present new opportunities for a malicious client to generate
memory pressure.

Downsides
So far, we’ve discussed how syncookies help us, but we’ve not spent much time any draw-

backs. Does that mean that there are none? Sadly, no.
We’ve already talked about MSS and WSCALE. With syncookies we are unable to reflect the

proposed value from the client with full fidelity. This
may mean that for some clients we leave some TCP
performance on the table. In most cases this is not
something to worry about.

Another downside is implicit in how syncookies
work: we unconditionally reply SYN+ACK to the SYN
packet. Even if the port is actually closed. That means
that the client may think opening the connection is
working, until it’s fully established, only to receive an
RST afterwards. That’s not ideal and may provoke un-
expected client behavior. That is, this may look differ-
ent from a “normal” failure to connect to users.

This can be mostly mitigated by ensuring that the
firewall immediately rejects packets to closed ports.
That’s generally a good idea anyway, and it goes dou-
bly so if syncookies are enabled.

Another downside is that there’s no retransmit mechanism for lost SYN+ACK packets. There
couldn’t be, because as soon as we send the SYN+ACK we forget everything about it. This isn’t
too much of a concern because the client will just assume its SYN packet got lost and retrans-
mit that. That will lead the server to generate a new SYN+ACK, which will hopefully not get
lost this time.

A final thing to bear in mind is that syncookies are not magic. They work well against SYN-
flood attacks, but they cannot protect against other attacks. For example, if a specially crafted
HTTP request consumes excessive system resources in the web server, this will not be stopped
by syncookies.

There’s also nothing to stop a motivated attacker from initiating connections from many dif-
ferent client IP addresses without spoofing the source address. In that case, the attacker can still
potentially open enough connections to exhaust the server’s resources. However, syncookies
make this much more expensive for the attacker. A SYN flood can be performed from a single
attacking host, with moderate bandwidth requirements. An attack that has the same effect us-
ing non-spoofed, TCP connections will require many more attacking hosts.

History
The FreeBSD pf syncookie code was adapted from the pf syncookie code in OpenBSD’s

pf. This code was originally written by Henning Brauer in 2018 with help from Alexandr
Nedvedicky.

With syncookies we are

unable to reflect the

proposed value from the

client with full fidelity.

5 of 7

44FreeBSD Journal • January/February 2022

The OpenBSD pf syncookie code was based on syncookie code in FreeBSD’s TCP stack, origi-
nally developed by Jonathan Lemon in 2001 (a9c96841638186f2e8d10962b80e8e9f683d0cbc).

It looks like the OpenBSD commit message is incorrect in its attribution to Andre Op-
permann. Andre did make significant improvements to the syncookie code in 2013
(81d392a09de0f2eeabaf68787896863eb9c370a8), which is probably where the misunder-
standing came from.

Implementation Notes
While OpenBSD and FreeBSD’s pf versions have diverged a bit over the years the similarities

still greatly outweigh the differences. As such, porting OpenBSD pf features to FreeBSD is often
relatively straightforward. The main stumbling block is the different approaches in locking strat-
egy. OpenBSD’s pf, like OpenBSD’s network stack, is protected by a single lock (NET_LOCK).
This has the advantage of great simplicity but does
come with some performance drawbacks.

FreeBSD’s pf takes a much more complex approach
to locking, but does get better performance in return.

This turned out to be relevant for the adap-
tive mode. Other aspects of the syncookie code fit
neatly into the existing locking approach. Howev-
er, OpenBSD’s approach of incrementing and decre-
menting a single counter value to track the number of
half-open states and in-flight syncookie packets. This
required the use of atomic operations in FreeBSD be-
cause there’s no equivalent NET_LOCK and multiple
cores can be processing TCP SYN or other packets at
the same time.

While this ensures we do not under or over count
the number of half-open states or in-flight syncookie
packets, it is still imperfect. The retrieval of the values is
atomic, but as we retrieve multiple values, they do not
always reflect a perfect snapshot. Happily, there is no requirement for strict correctness here.
The worst case is that we enable or disable syncookies slightly early or late. As both syncook-
ie-mediated and normal connections can be established at the same time, this is not a notice-
able concern for users.

Configuration
After all of that, readers could be forgiven for assuming that the configuration of syncookies

is a complicated affair, but this is not the case. There’s only one required line, in the options sec-
tion of pf.conf:

 set syncookies always

or

 set syncookies adaptive

While OpenBSD and

FreeBSD’s pf versions have

diverged a bit over the years

the similarities still greatly

outweigh the differences.

6 of 7

45FreeBSD Journal • January/February 2022

The first will always respond to SYN packets with a syncookie SYN+ACK. In adaptive mode
pf will only do so when a lot of connections are in half-open state. That is, we’ve replied SYN-
+ACK to an ACK message and are waiting for the ACK in response. This ideally combines
the best of both worlds: we get all the advantages of normal TCP connection processing (i.e.,
full-option negotiation, immediate feedback when the connection cannot be opened) but with
some protection against SYN floods.

Adaptive mode, low and high water marks (i.e. where we disable and enable syncookies re-
spectively) can be configured as well:

 set syncookies adaptive (start 25%, end 12%)

The values are expressed as percentages of the state table size. If no syncookie configuration
line is present the feature will default to being disabled. This means there is no change in be-
havior unless users explicitly enable syncookies.

Conclusion
Are syncookies right for you? They may be if your systems are attacked by SYN floods. If

they are not you may want to leave them disabled, but even so, it’s good to know they exist.
SYN floods are a very old type of attack, but as long as they work, even occasionally, attackers
may decide to use them. Defenders must be ready with appropriate tools.

The new pf syncookie feature is already present in the recent 12.3 release, and will also be
present in the upcoming 13.1 release.

The effort to port the OpenBSD pf syncookie code to FreeBSD’s pf was sponsored by Modi-
rum MDPay.

KRISTOF PROVOST is a freelance embedded software engineer specializing in network and
video applications. He’s a FreeBSD committer, maintainer of the pf firewall in FreeBSD and a
board member of the EuroBSDCon foundation. Kristof has an unfortunate tendency to stumble
into uClibc bugs, and a burning hatred for FTP. Do not talk to him about IPv6 fragmentation.

7 of 7

https://opensource101.com/

Nov/Dec 2019 57

November/December 2021

Open Channel SSD

Building FreeBSD Communities

27 Years with the Perfect OS

WIP/CFT:OccamBSD

2022 Editorial Calendar
• Software and System Management

(January-February)

• ARM64 is Tier 1 (March-April)

• Disaster Recovery (May-June)

• Science, Systems, and FreeBSD (July-August)

• Performance (September-October)

• Topic to be decided (November-December)

47FreeBSD Journal • January/February 2022

Jails are one of FreeBSDs most famous features. They enable a single server to offer many ser-
vices while maintaining clear separation between the applications the server runs. While jails
were one of the first uses of containerization, FreeBSD didn’t end up with the majority of the
mindshare and, instead, tools such as docker won the day.

Part of the reason for this can probably be attributed to the high-quality tools in a normal
FreeBSD installation being more than enough to manage a fleet of services on a single host.
Over time, tooling has gotten friendlier all round, while in FreeBSD, there is a lack of a single,
straight-forward management and automation framework for jail management tasks. This can
be seen through the sheer number of projects that aim to add an extra layer on top of the
FreeBSD base tools to manage jails and their life cycles.

mkjail is not one of these jail management layers, it is, instead, a simple interface to the cre-
ation, updating and upgrading of jails. mkjail only does these three things. Management of the
rest of the jail’s life cycle is handled by the normal
FreeBSD jail infrastructure.

mkjail eschews a lot of the complexity that
come with other fuller-featured jail frameworks.
Other frameworks allow complex hierarchies of
configuration and overlay, using thin jails on top
of base jails to reduce foot print a little. Instead,
mkjail is a simple tool for creating jails — it cre-
ates FreeBSD systems in bottles. The first line of its
source describes it well: “Lazy, dirty tool for creat-
ing fat jails.”

mkjail can be simple by reducing the situations
in which it works. It only offers the creation of
what are called “fat” jails and every fat jail has an
vidual jails.

mkjail uses a small configuration file that de-
scribes the location of the zfs datasets for the jails
mkjail will create, their location in the file system and finally the install sets which should be in-
stalled in the jails. Once a jail has been created with mkjail, it must be integrated into /etc/jails.
conf in the same way as another jail managed with the base system tools.

Jail creation can be straightforward with base system tools — bsdinstall has the jail com-
mand that can install a jail into any specified directory. mkjail expands on this functionality and
handles integration with zfs tools and a clean interface to performing updates and upgrades.

mkjail shines when it comes to updating and upgrading jails, turning these operations into
single commands. Because mkjail only runs with fat jails, none of the management issues with
thin jails appear when doing updates and upgrades.

BY TOM JONES

mkjail

1 of 2

mkjail eschews a lot

of the complexity

that come with other

fuller-featured jail

frameworks.

48FreeBSD Journal • January/February 2022

mkjail[1] was initially developed by Mark Felder, was put on github by BSDCan’s Dan Lagille
and has had contributions from Andrew Fyfe. The project is developed on github (https://
github.com/mkjail/mkjail) and is still very young — the github import of the source tree to
github goes back to mid 2021.

mkjail is intended to be a small tool to enhance and ease jail creation, updates, and up-
grades. It has been written as a couple of small shell scripts and is small enough that it could be
integrated into the FreeBSD base system.

mkjail is happy to accept contributions through its github in the form of pull requests for
code or documentation or with issues there to discuss bugs and new features. mkjail is entirely
written in sh which makes contributing code relatively straight forward.

As mkjail is a young project, it can benefit a lot from testing, both of its sub commands as
implemented, but also through exposure to your workflow. The best way to contribute to mk-
jail is to try it out and feedback any issues you had with the documentation, the code or any
pain points where small additions would make sense to enable your workflow.

TOM JONES wants FreeBSD-based projects to get the attention they deserve. He lives in the
North East of Scotland and offers FreeBSD consulting..

2 of 2

mkjail

Pluggable Authentication Modules:
 Threat or Menace?

PAM is one of the most misunderstood parts of systems
administration. Many sysadmins live with authentication
problems rather than risk making them worse. PAM’s very
nature makes it unlike any other Unix access control system.

If you have PAM misery or PAM mysteries, you need PAM
Mastery!

“Once again Michael W Lucas nailed it.” — nixCraft

PAM Mastery by Michael W Lucas
https://mwl.io

https://github.com/mkjail/mkjail
https://github.com/mkjail/mkjail

49FreeBSD Journal • January/February 2022

Dear Practical Ports,
Should I set aside some time to read The Kollected Kode Vicious by
George V. Neville-Neil instead of a book about a new programming
language — one that I need for my job? I don’t have much time for
reading, so I need to choose carefully. I also don’t see how someone
using a pseudonym like KV instead of their real name can be tak-
en seriously, especially when giving such opinionated advice to other
people.

 — A Skeptical Reader Without Much Time These Days

Dear Skeptical,
Have you ever come across the name Alice Addertongue or Silence Dogood? Or maybe Poor
Richard rings a bell? These were pseudonyms used by none other than Benjamin Franklin.
Pseudonyms and caricatures were very commonly used during Franklin’s time, even though it
was often clear who was behind the writing. Not only did the different caricatures allow Frank-
lin to offer readers (of his own newspaper) a different perspective on a wide variety of subjects,
but they also permitted him to use hyperbole, sarcasm, and whimsy to entertain readers and
shape their opinions. So, writing under an assumed name and persona is not new, and, actual-
ly, as you’re writing to Practical Ports, you’re also participating in the scenario.

Before we get to the book, let’s address your problem of setting aside time for reading
books.

“Everybody has time. Stop watching fscking Lost!”
— Gary Vaynerchuk, in 2008 at Web 2.0 Expo NY
https://www.youtube.com/watch?v=EhqZ0RU95d4

But, ok, that aside, I can understand that time can be hard to come by these days. Plus,
there are only so many books you can read (bonus points if they are good books!). Doom-
scrolling the news or social media does not count as reading, nor does getting caught in the
endless Youtube loop. Books are still relevant sources of knowledge and entertainment — per-
haps now more than ever — which is why I’ve devoted time to reviewing this one. Even with

BY BENEDICT REUSCHLING

PRACTICAL

1 of 3

A review of
The Kollected Kode Vicious

ISBN-13:
ISBN-10:

978-0-13-678824-90-13-678824-6

9 7 8 0 1 3 6 7 8 8 2 4 9

5 4 4 9 9

$44.99 USA

informit.com/aw | kodevicious.io
Cover design: Chuti Prasertsith Cover illustration: Little Princess/Shutterstock, alexslb/Shutterstock, silky/ShutterstockCategory: Programming

at informit.com/register for convenient access to downloads, updates, and/or corrections as they become available.

“For many years I have been a fan of the regular columns by Kode Vicious in Communications of the ACM. The topics are not only timely, they’re explained with wit and elegance.”—From the Foreword by Donald E. Knuth

Pragmatic, Bite-Sized Programming Advice from Koder-with-Attitude Kode ViciousWriting as Kode Vicious (KV), George V. Neville-Neil has spent more than 15 years sharing incisive advice and fi erce insights for everyone who codes, works with code, or works with coders. Now, in The Kollected Kode Vicious, he’s brought together his best essays and Socratic dialogues on the topic of building more eff ective computer systems. These columns have been among the most popular items published in ACM’s Queue magazine, as well as Communications of the ACM, and KV’s entertaining and perceptive explorations are supplemented here with new material that illuminates broader themes and addresses issues relevant to every software professional.

Neville-Neil cuts to the heart of the matter and off ers practical takeaways for newcomers and veterans alike on the following topics:

 The Kode at Hand: What to do (or not to do) with a specifi c piece of code
 Koding Konundrums: Issues that surround code, such as testing and documentation Systems Design: Overall systems design topics, from abstraction and threads to security Machine to Machine: Distributed systems and computer networking

 Human to Human: Dealing with developers, managers, and other people

Each chapter brings together letters, responses, and advice that apply directly to day-to-day problems faced by those who work in or with computing systems. While the answers to the questions posed are always written with an eye towards humor, the advice given is deadly serious.

George V. Neville-Neil hacks, writes, teaches, and consults on security, networking, and operating systems. A FreeBSD Foundation board member, he has written the “Kode Vicious” column since 2004. He is a member of ACM’s Queue Editorial Board; a member of Usenix Association, ACM, and IEEE; and coauthor of The Design and Implementation of the FreeBSD Operating System, Second Edition(Addison-Wesley, 2015).

TH
E K

O
LLE

C
TE

D
 K

O
D

E
 VIC

IO
U

S

GEORGE V. NEVILLE-NEIL

N
EVILLE-N

EIL

THEKOLLECTED
KODEVICIOUS

 Opinionated Advice for
Programmers

Foreword by DONALD E. KNUTH

9780136788249_Neville-Neil_Kollected_Kode_Vicious_Cover.indd All Pages

9780136788249_Neville-Neil_Kollected_Kode_Vicious_Cover.indd All Pages

9/10/20 12:43 PM9/10/20 12:43 PM

https://www.youtube.com/watch?v=EhqZ0RU95d4

PRACTICAL

50FreeBSD Journal • January/February 2022

the sea of electronic information that is the Internet, there is timeless wisdom to be absorbed
and pleasure to be had when turning physical pages.

Now, to your question of whether the Kode Vicious book is worth some of your appor-
tioned time? For the uninitiated KV reader, I should explain that this book is a collection and
grouping by theme of KV’s columns from the ACM Queue column of the same name. The au-
thor wrote the columns over a number of years and kollected the best ones for the book, orga-
nizing them by topic and adding short intro pieces. How he got one of the giants of Computer
Science, Donald E. Knuth, to write the foreword, will perhaps forever remain the author’s se-
cret. Talk about being knighted!

I’m a huge fan of quotes at the beginning of chapters and there are plenty of them here
that encapsulate what you’re about to read in the columns. (Example: Oh Bullwinkle, that trick
never works! – Rocky J. Squirrel) If you have never read a KV column, know that they follow
the revered question-and-answer/advice column format — a format so old that it goes back to
Ben Franklin’s deconstruction and reconstruction approach, and then, of course, to Socrates.
The letters/questions in The Kollected Kode Vicious are framed as coming from a confused or
puzzled individual seeking KV’s advice. The questions are realistic and relevant and often resem-
ble what I hear from students. Some of the later columns clearly address actual correspondence
while some of the earlier columns are ghostwritten. In all cases, the answer/advice picks up
the question and explains, defuses, deconstructs, rearranges, or discourages assumptions while
shedding new light on the topic. Opinions are offered that are generally well intentioned and
provide the sought-after advice. Many of these letters (if not all) could end with the words of-
ten used in Zen stories: “and thus the student was enlightened.”

Checking out the table of contents reveals the following groupings:
• The Kode at Hand — deals with everyday annoyances and musings that programmers
(like you) must deal with — from allocating too much memory, exception handling (or the
lack of it) to proper logging and coding style discussions. This chapter will appeal mostly to
programmers and is not for occasional computer users who wonder why the Internet is not
working.

• Koding Konundrums — considers more philosophical questions like what makes a good
programming language, avoiding spaghetti code that endlessly includes one file after the
other, why tests are important, and meta-topics like code scanners and debugging strate-
gies. All are valuable to read, and if you’ve programmed for several years, you’ll definitely
find a familiar story in there. If you ask yourself why the things are the way they are now,
then the next chapter will enlighten you.

• Systems Design — looks at the choices (mostly bad ones) that people have made in de-
signing systems we use every day or to program the ones we’ll have to shake our fist at in
the future. Evergreens like authentication vs. encryption, cross-site scripting, phishing and
infections (the latter dealing with computer systems, mind you), and UI design will have
you frequently nodding your head in agreement and shaking it at the prime examples of
bad design. I will leave it up to you to find out why Java is listed in that chapter.

• Machine to Machine — discusses latency, failures to scale, protocol design, and the ev-
er-growing list standards. if you know the author or know of him, it will not surprise you
that this is not about networks connecting these machines. And if you think this is upset-
ting, then wait until you’ve read the next section...

2 of 3

PRACTICAL

51FreeBSD Journal • January/February 2022

• Human to Human — ponders how to name your hosts, leaving your pride out of it, code
interview questions, and bikeshed coloring. People bring a lot of interesting traits to com-
puting — if only they were good ones.

In each of these chapters, using stories that reveal insight and experience, the author cau-
tions and educates. Although often presented with a grumpy undertone (perhaps from having
seen too many of these instances), there is not one page where you get the feeling things are
hopeless. Instead, there is a lot of practical advice mixed with personal preferences and recom-
mendations and it’s always imparted with wit and good humor.

I can imagine two excellent uses for this book. One is for light entertainment reading, and
the other is for use as a reference book. The columns are brief enough to read during a short
break (with a beverage of choice) or before going to sleep (nightmares notwithstanding).

Keep the book where you’ll be able to grab it quickly so that, when necessary, you can re-
read the relevant section about the problem you’re facing. Another thought is to give it to your
colleagues and peers when an argument ensues or when you have a pending design decision.
“Let’s turn to the Vicious book to remind ourselves of what not to do,” can be uttered when
discussion seems to be stuck and could use a fresh perspective. Both seasoned and new col-
leagues will find something interesting and relevant in these columns as they nod in agreement
(been there, done that) or smile about an amusing anecdote.

Now, returning to your question of whether you should fill your limited reading time with
The Kollected Kode Vicious over a book on a new programming language, I would say, “yes.”
I think you should read KV’s book, but don’t expect to find much advice like “use this clever
code snippet to make your code faster” or “using Emacs as your editor will increase your pro-
ductivity thousandfold.” Another programming language may look good on a resume, but at
the end of the day, these things are mere tools of the trade. There is so much more to what we
do than writing code! This is what the book will explain to you as it offers a broad view of the
joys and sorrows of the industry. Your mileage may vary, but I think it will be worth your while
to read this book and internalize its teachings.

Let me close with another quote:

“ Last year, a foolish monk.
This year, no change.”
— Japanese Zen poet Ryokan Taigu

PP

BENEDICT REUSCHLING is a documentation committer in the FreeBSD project and member
of the documentation engineering team. He serves on the board of directors of the FreeBSD
Foundation as vice president. In the past, he served on the FreeBSD core team for two terms.
He administers a big data cluster at the University of Applied Sciences, Darmstadt, Germany.
He’s also teaching a course “Unix for Developers” for undergraduates. Benedict is one of the
hosts of the weekly bsdnow.tv podcast.

3 of 3

https://www.bsdnow.tv/

Dear Geezer,

You’ve been around a while. I know, because
one of your books had a terrible accident when
I was learning not to eat the cat and my dad was
upset because you had signed it, meaning you
had touched it, and he was afraid I might catch
something from the pages. I know you won’t be
upset, because he had to buy a second copy, so you
came out all right.

For almost that long, people have been
babbling about this thing called “packaged base.”
It’s supposed to solve everything, but it never
happens. What’s really going on with it?

 —A Young, Smart Person Tired of Waiting

Dearest Useless Punk,
Just because my current age matches the freeway speed limit in oppressive regimes, like

Salt Lake City, doesn’t mean I’m a geezer. My experience and astute realism, which are often
misperceived as undying impenetrable cynicism, make me the geezer. And packaged base has
only fed that.

There is only one true way to upgrade any BSD system. You get the source code, prefera-
bly by checking it out via SCCS although floppies will do in a pinch and install it under /usr/src.
You build the software. You can do this because real operating systems ship with fully functional
compilers in the default install. Your phone is not a computer. It is an appliance. So is your door-
bell, your pacemaker, anything running Windows, and most Linux installs. (Yes, with enough
hacking you can get a compiler on your pacemaker, upgrading it to a computer, but that de-
mands special skills and an impressive degree of reckless self-disregard.) You’re running BSD, so
you have a computer. Having built it, you install it on that same system, reboot, and voilà! You’re
upgraded. Yes, some optimizations are permissible — you can use NFS to share the source code
and your hand-compiled binaries across your server farm, or better yet assign some flunky who
has annoyed you to perform all the upgrades without disturbing you. This is the only way to be
certain that the code you install is intended for your systems.

This is the natural state of any BSD system. Deviations from it are unnatural.
Unfortunately, a certain well-meaning but flawed person who I’m not going to specifically

point out but whose name rhymes with Polin Cercival thought that FreeBSD needed an upgrade
system usable by people with a morbid fear of compilers. (Never mind that such people should

1 of 3

52FreeBSD Journal • January/February 2022

by Michael W Lucas

freebsdjournal.org

not be allowed near a computer, an appliance, or an abacus with three or more beads.) That’s
where freebsd-update(8) came from. It “conveniently” downloads the smallest possible binary
diffs and applies them to a system, so that you can trivially upgrade thousands of systems with-
out even working late. Working late, alone in the office, illuminated by only flickering emergency
lights and with no sound but the hum of the air conditioner, is one of the fringe benefits of be-
ing a systems administrator. It gives you an excuse to be cantankerous the rest of the time. Why
be a sysadmin if you can’t surl at the lesser mortals? Fortunately, sysadmins still have developers,
network administrators, and the entire sales department to provide an excuse.

And that’s where we are today. FreeBSD can be upgraded by anyone who can weasel, wan-
der, or whimsy their way into a root prompt.

This deplorable state of affairs is somehow insuffi-
ciently welcoming for certain members of the commu-
nity, however. They look at less magnificent operating
systems and see that their so-called “base systems” are
broken up into packages. User management software
is a package. Network software? A package. Every lit-
tle bitty piece of the system becomes its own package,
with its own files and metadata and installation scripts
and — worst of all — dependencies. Rule of System
Administration #32 is very correct in that “Dependen-
cies are the root of all suffering.” We’ve all been trapped
managing some barbarian system composed of dozens
or hundreds of packages and discovering that essential
programs like traceroute and ifconfig are not installed.
You have to hunt around to figure out in which pack-

age this particular operating system imprisons those vital programs and try to install it, only to
discover that the package management system itself needs updating and the package reposito-
ry version has changed and a currently installed package isn’t compatible with the new package
and law enforcement officers show up to discuss what your boss keeps insisting was a “bit of an
overreaction” when you know perfectly well the entire spree was justified and that the janitor
will have no trouble getting the stains out of the carpet, ceiling, and driveway.

Who could possibly want to inflict this upon millions of FreeBSD users? Advocates say that
packaging the base system would make it very easy to install minimal FreeBSD systems that con-
tained only the programs needed to perform their assigned tasks. That sounds great, but it’s like
“exercise” and “eating healthy” and “not petting the adorable Sumatran tiger even though it’s
right there.” It’s not going to happen. Designing operating system installs that contain only what
you need requires predicting infinite capacity to predict the future, or planning, neither of which
is likely. You know perfectly well that the tiny system intended for use only for a nameserver
is gonna wind up running CRM suites and video editing software for the CEO’s nephew’s girl-
friend’s glitterpunk band. That’s the natural server lifecycle.

The correct way to get an uncomfortably sparse FreeBSD system is to build it from source.
The FreeBSD build system includes options to include and exclude components. Michael Dex-
ter has organized and tested all these options in his Build Options Survey (https://callfortesting.
org/results/). You could even proceed directly to OccamBSD (https://github.com/michaeldexter/
occambsd), a minimum viable FreeBSD build intended to host jails, bhyve, and Xen clients. Oc-
camBSD is a good place to start, as re-enabling features is much simpler than tearing them out.

2 of 3

Packaged base
is the dread dragon
of FreeBSD,
devouring every
developer who
sets out to conquer it.

53FreeBSD Journal • January/February 2022

https://callfortesting.org/results/
https://callfortesting.org/results/
https://github.com/michaeldexter/occambsd
https://github.com/michaeldexter/occambsd

Fortunately, FreeBSD itself strongly resists being packaged. It is designed as a single cohesive
system and does not like being teased apart into independent components. Sorting out what
parts of the system truly depend on one another, and which are merely close personal friends, is
a seriously hard problem that many developers have beaten their heads against for years. Many
approaches have been attempted and failed. Packaged base is the dread dragon of FreeBSD, de-
vouring every developer who sets out to conquer it. The world has an endless supply of optimis-
tic developers, however, and I have no doubt that one day one of them will succeed and further
weaken the moral fiber necessary to run FreeBSD.

With any luck, I’ll be dead by then. Or at least not answering your letters.

Have a question for Michael?
Send it to letters@freebsdjournal.org

MICHAEL W LUCAS’ head is stuffed full of obsolete knowledge, much of it about FreeBSD, oth-
er BSDs, and a few other, lesser operating systems. To learn anything new, he’ll have to throw out
some of that junk. His latest books include $ git sync murder, TLS Mastery, and SNMP Mastery.
DNSSEC Mastery should be out by the time you read this, but he’s lazy so it probably won’t be.
Learn more at https://mwl.io.

3 of 3

all the storage; we use ZFS to replicate the data between cluster nodes; we use
compression and snapshots. And we heavily use Capsicum to make it all secure.

We want to be sure that even if someone breaks into a single session, he can-
not access other sessions. He cannot actually access anything, because if he
breaks in before authentication, he won't be granted access to connect to the
server. Only after successful authentication will we provide a connection to the
destination server.

And Capsicum makes it really clean and very efficient actually.
Al lan: You don't have to enumerate all the things you can't do. You're saying
you're only allowed to do these things?

• Pawel: Yes. This is capability ideology. You only grant the exact rights or access
to resources that the process requires. Which is not UNIX ideology because, of
course, if you are running a UNIX program, it has access to everything.
Al lan: Was there anything else you wanted to talk about?

• Pawel: Not really. •

Sept/Oct 2019 23

FreeBSD is internationally recognized as an innovative
leader in providing a high-performance, secure, and stable
operating system.
Not only is FreeBSD easy to install, but it runs a huge number

full source code.

The FreeBSD Community is proudly supported by

T

Help Create the Future.
Join the FreeBSD Project!

The FreeBSD Project is looking for

Find out more by

Checking out our website

Downloading the Software

for people like you to help continue
developing this robust operating system.
Join us!

Already involved?

Don�t forget to check out the latest
grant opportunities at
freebsdfoundation.org

54FreeBSD Journal • January/February 2022

freebsdjournal.org

https://mwl.io

Donate to the Foundation!

Support
 FreeBSD

You already know that FreeBSD is an internationally
recognized leader in providing a high-performance,
secure, and stable operating system. It�s because of
you. Your donations have a direct impact on the Project.

Please consider making a gift to support FreeBSD for the
coming year. It�s only with your help that we can continue
and increase our support to make FreeBSD the high-
performance, secure, and reliable OS you know and love!

Your investment will help:

Funding Projects to Advance FreeBSD

Increasing Our FreeBSD Advocacy and

Providing Additional Conference
Resources and Travel Grants

Continued Development of the FreeBSD
Journal

Protecting FreeBSD IP and Providing
Legal Support to the Project

Purchasing Hardware to Build and
Improve FreeBSD Project Infrastructure

Making a donation is quick and easy.
freebsdfoundation.org/donate

®

®

56FreeBSD Journal • January/February 2022

I became involved in EuroBSDCon during the Covid pandemic. It was September 2020, and I
didn’t know the Board of Directors for the EuroBSDCon Foundation (henceforth referred to
as “the Foundation”), and only knew of some of the members of the organizing committee
and selection committee from other conferences like BSDCan. EuroBSDCon 2020 had been

cancelled as had BSDCan 2021, and EuroBSDCon 2021 was looking dicey too. There wasn’t
much enthusiasm for a virtual conference (or “online” conference, which sounded slightly bet-
ter than “virtual”, but still bad).

I will be specific about how I got involved, because I think it’s important for people to know
what to do if they want to get involved in conferences and administrative aspects of open
source projects, especially internationally. I am a Canadian woman and would encourage any-
one who wants to get involved in open source projects to reach out to key people on the proj-
ects, starting with Boards of Directors. We are all humans, and volunteering/donating (wheth-
er it be lines of code, bug fixes, porting, vulnerability discoveries, monetary donations, hosting
booths at conferences, giving talks, administrative support, documentation, project manage-
ment, community building, advocacy, etc.) makes a great impression. There are many ways to
give back to open source projects, which are bringing humankind some of the best hardware
and software available today.

In this case, I emailed the Foundation that runs EuroBSDCon to ask how to get involved. I
kept it short, and said:

Hello,
I would like to volunteer for EuroBSDCon 2021 and am wondering what the
best way is to get involved? I live in Ottawa, Canada, and normally volunteer for
BSDCan, but as it has been cancelled for 2021 I would like to divert my energy to
EuroBSDCon.
Thank you,
Katie

And a couple of weeks later I was managing the website. Well, no, it wasn’t quite that sim-
ple. Turns out I was signing on to learn Wordpress and inherit a website for a conference which
may or may not happen. Some plugins, content, assets, different users, SEO configurations,
a theme…, but while inheriting the site would also seem scary in the sense of entering into a
“decision-by-committee” process with the Foundation, who were mysterious (to someone who

BY KATIE MCMILLAN

1 of 6

My First EuroBSDCon:
A New Organizer’s Perspective

Conference Reports
EuroBSDCon 2021

57FreeBSD Journal • January/February 2022

doesn’t use social media), it ended up not being like that at all. In fact, they wanted someone
to help with the website, and were happy that I wanted to contribute in this way. So, I started
learning to use Wordpress as a CMS, picking up HTML and CSS, and with Lighthouse audits
and SEO tools, realized how powerful open source tools were for web development. The board
members acted as experienced guides; I felt accompanied, assisted, and appreciated., I devel-
oped at my own pace, and that worked really well. When I screwed up and crashed the web-
site (which only happened once or twice) everyone was fine with that too. What it highlighted
to me, is that learning is a continuous process, and I wasn’t just going to learn web develop-
ment, get my gold star, and be finished. With their support I’m continuing to develop and learn
new things all the time.

The Conference
Some of us attended the conference online and oth-

ers in person; it really ended up being a hybrid event. In
all, we had approximately 500 registrations, reaching 100
simultaneous attendees. It was amazing to see so many
great talks, questions, and to put faces to names. For
me, it was particularly well-timed as PGDay Austria was
being held in-person at the same time, so I was able to
attend that while I was in Vienna. It was so nice to at-
tend in-person, as, due to the pandemic, I hadn’t trav-
elled for a long time before that. I really wanted to be
there to help support the community and tools. I was
pleasantly surprised when Austrian locals showed up to
attend and support in person!

For the conference infrastructure we leveraged a com-
bination of tools, some open source some closed source.
Kristof Provost brought key insights to ensuring that the
tools were going to work harmoniously and provide a
streamlined experience. We aimed to somewhat resem-
ble (or be inspired by) the in-person conference experi-
ence with moderated talk rooms, allowing for engagement with speakers and Q/A sessions,
with social coffee periods and sponsor booths in a separate area. My favorite part was using
the tool I supported from the beginning of the conference organization: Big Blue Button. We
used it as our video conference and recording software: this open source software is awesome!
I use it all the time to whip up a quick meeting room, and it is one of the favorite open source
tools in my toolbox, especially after it worked so well for an online conference of this size.

The other neat part about using Big Blue Button was our ability to find a fantastic provid-
er of hosting, support, and video editing services. Since it’s open source, we were able to be
highly selective, and look everywhere, and we ended up choosing a company called RiAdvice,
based in Tunisia. The CEO, Ghazi Triki, and his team were fantastic to work with and it really
felt like having a strategic partner who was part of the team. We were grateful to the team at
RiAdvice for all of their help with planning, execution, support, and post conference activities

My favorite part was

using the tool I supported

from the beginning of the

conference organization:

Big Blue Button.

2 of 6Conference Reports
EuroBSDCon 2021

58FreeBSD Journal • January/February 2022

including video editing. Having this level of friendly, profession-
al support really added to the fun and reduced the stress, of
the whole event. It was great to be a part of such an innova-
tive and collaborative conference experience and to be able to
leverage open source software for an open source software
conference.

I appreciate how included I felt as a woman at the confer-
ence. Not only did the bathroom doors have inclusive signs on
them, but everyone made me feel welcome and part of the
team. So much so, in fact, that I have since formally joined the
Board of Directors for the Foundation. I do ask—especially if
you’re a person identifying as any gender other than male and
reading this—that you consider submitting a talk abstract or
volunteering at next year’s conference!

Why I’ll Do it Again Next Year
The coffee was spectacular. Okay, that’s not the only rea-

son, but you absolutely must add “drink a melange in Vienna” to your Bucket List, it is a won-
derful experience. Vienna is a truly breathtaking city, with its fabulous architecture, food, mon-
uments, shopping, theatre, palaces, public transportation — I encourage everyone to travel to
this gorgeous city.

I’ll definitely do it again next year because of the people. I loved the eclectic group of people
and was touched by the hospitality
and inclusion. I laughed so hard, and
not just when Henning Brauer tasted
a wild plant that was growing on the
SBA Research terrace. He was fine,
but I have decided to update my
First Aid and CPR certificate for next
year’s conference.

At the end of the day, confer-
ences and other types of communi-
ty building, networking, profession-
al development, and engagement
activities are critical to the successx-
of open source projects of all kinds.
These are community projects lever-
aging transparent community-driven
development. This approach fosters
the sustainability, advanced security,
vendor neutrality, social positivity, inclusivity, innovation, and interoperability of the projects.
It also encourages international human connections and relationships. Let’s not lose sight of
how important human connections are in this digital world. Sometimes it is easy to feel like

3 of 6Conference Reports
EuroBSDCon 2021

https://2022.eurobsdcon.org/

an island when it feels like those around you
don’t share your interests.

I thank the EuroBSDCon Foundation Board,
Conference Sponsors, Organizing Committee,
Selection Committee, and Attendees for allow-
ing me to be part of something so important to
foster the diversity, creativity, comradery, sense
of humor, and endurance of the BSD internation-
al community.

My friends, see you next year and I wish you
a “Gute Fahrt!”

KATIE MCMILLAN has worked in Canadian healthcare since 2004; she began her career at
Health Canada assisting with the development of the Air Quality Health Index (AQHI). She has
continued in health roles, building her career around her love for standards, innovation and
digital excellence. With a focus on empowering digital strategies with security and interoper-
ability, which has led her to open-source solutions, she has had job titles such as GIS Analyst,
Application Services Consultant, and Digital Strategy and Excellence Lead. Since 2021 she has
broadened her vision of the healthcare system, and now works for an established Canadian
marketing, applications, and software vendor, Snap360. She continues to participate in the ad-
vancement of digital health through use, development, and promotion of open-source tech-
nologies such as OSCAR EMR, R/R Studio, PostgreSQL, Mirth Connect, *BSD, WordPress, and
HL7. Katie enjoys hiking, coffee, cross-country skiing, sudokus, horse-back riding, and the Bay
of Quinte.

Conference Reports
EuroBSDCon 2021

59FreeBSD Journal • January/February 2022

4 of 6

https://opensource101.com/

EuroBSDCon 2021:
Report by René Ladan

60FreeBSD Journal • January/February 2022

5 of 6Conference Reports
EuroBSDCon 2021

Q = imaginary interviewer
R = René

Q: How did you get involved with the EuroBSDCon Foundation?
R: I have been using FreeBSD since 2003 after dabbling for a bit with some Linux distributions. I
started contributing to the (now defunct) Dutch translation of the FreeBSD Handbook and was
consequently rewarded with a doc commit bit in 2008. I made the same mistake with ports
land and was faced with a ports commit bit in 2010. I have been on the Ports Management
Team (portmgr@) since 2016 where I mostly assume the role of secretary.

Q: OK, but what about the EuroBSDCon Foundation?
R: Ah, yes, so because I was following some mailing lists, I read about this conference in Can-
ada called BSDCan. I figured at that moment that devel-
opers actually meet in person from time to time, which
was a nice surprise. So, I ended up debuting my BSD
conference visits with BSDCan in 2010. Unfortunately, I
couldn’t visit EuroBSDCon in 2010 because of work obli-
gations, but I attended it in 2011 and haven’t skipped a
year of EuroBSDCon since.

This non-stop attendance also drew the attention
of the EuroBSDCon Foundation in 2016, which result-
ed in me being pulled over during dinner to join a board
meeting the next day. During that meeting, it turned out
that they were looking for some more Dutch members
because of (by)laws, as the Foundation is Dutch and I
happen to be Dutch too. I agreed to join the board and have been doing secretary work ever
since—things like proposing agendas and minuting, but also helping out attendees with em-
bassy paperwork.

Q: What do the conferences that you help organize look like?
R: So, normally, the EuroBSDCon is an in-person event, but the COVID pandemic changed the
rules. We decided to completely cancel the 2020 edition because BSDCan already went virtual
and we felt a second online conference that year wouldn’t add much. We had some hope that
this year’s conference could be held in person again, probably on a smaller scale—with prob-

Normally, the EuroBSDCon

is an in-person event,

but the COVID pandemic

changed the rules.

Conference Reports
EuroBSDCon 2021

61FreeBSD Journal • January/February 2022

6 of 6

ably mostly European attendees. But we had to organize an online component to cater to our
overseas attendees anyway, so we figured it was easier to just keep it online.

Q: Did you ever organize an online conference before?
R: While we didn’t have to organize any local component, we did have to learn how to orga-
nize an online conference from scratch. We visited some other online conferences just to take a
peek at how they did things. We settled on using BigBlueButton for the talks and Spatial.chat
for the hallway track.

We chose two services because BigBlueButton had more mature recording capabilities at the
time and an API that we could use to schedule the recordings, while Spatial.chat provided a real
nice online hallway experience.

I think the conference was a success despite being online. We did feel the interaction with
people was missing, giving a talk or making announcements in front of a screen just isn’t the
same as with a crowd sitting in front of you. We held an unofficial, in-person mini-conference
in Vienna which attracted some people from the organization and some local people—so that
gave us the opportunity to still socialize a bit before, during, and after the conference.

Q: Would you organize another conference?
R: Yes, for multiple reasons.

First of all, it is lots of fun to attend these conferences, with a new city to visit each year. So,
these conferences are also a kind of mini holiday for me. The talks provide insight into the cur-
rent state of affairs, but more importantly, the hallway track allows me to catch up with people
which I might not have seen for a year or longer. While I mostly do invisible work for most peo-
ple, the work in itself does enable several people to attend each year and it also keeps the ma-
chinery going.

Let’s hope that work is for a full, in-person conference in Vienna (again) later this year!

RENÉ LADAN studied computing science at the Eindhoven University of Technology where he
graduated in 2006. After that he has worked at various companies, including the university it-
self. He currently works as a software engineer at Carapax IT.

René started his open source shadow career with some small projects on Sourceforge but it
really took off when he started to work on FreeBSD in 2004. Meanwhile, he has been award-
ed both a documentation and a ports commit bit and is now part of the Ports Management
Team (aka portmgr@). After visiting too many instances of EuroBSDCon, he was drawn into
the accompanying Foundation in 2016 and assumes the role of secretary ever since.

When not doing BSD stuff and still in nerd mode, he likes to tinker with his homebrew
time station receivers. Outside of technical things, René likes to hike, puzzle, and work in his
parents’ garden.

BSD Events taking place through July 2022
BY ANNE DICKISON

SCALE 19x
July 28-31, 2022
Los Angeles, CA
https://www.socallinuxexpo.org/scale/19x

SCaLE 19X – the 19th annual Southern California Linux Expo – will take place July 28-31, 2022 in
Los Angeles, CA. SCaLE is the largest community-run open-source and free software conference in
North America. It is held annually in the greater Los Angeles area. Roller Angel will also be hosting a
FreeBSD workshop during the conference.

Please send details of any FreeBSD related events or events that are of interest for FreeBSD
users which are not listed here to freebsd-doc@FreeBSD.org.

FreeBSD Fridays
https://freebsdfoundation.org/freebsd-fridays/

Stay tuned for new episodes in early 2022.
Past FreeBSD Fridays sessions are available at: https://freebsdfoundation.org/freebsd-fridays/

FreeBSD Office Hours
https://wiki.freebsd.org/OfficeHours

Join members of the FreeBSD community for FreeBSD Office Hours. From general Q&A to
topic-based demos and tutorials, Office Hours is a great way to get answers to your FreeBSD-
related questions.

Past episodes can be found at the FreeBSD YouTube Channel.
https://www.youtube.com/c/FreeBSDProject.

62FreeBSD Journal • January/February 2022

Open Source 101
March 29, 2022
VIRTUAL
https://opensource101.com/

Open Source 101 is a one-day conference focusing on the “basics” of open source. Join the
AllThingsOpen team and some amazing sponsors, speakers and attendees for a full day of live
open source programming on Tuesday, March 29. FREE to attend. The Foundation is pleased to
be a Media Sponsor.

https://www.socallinuxexpo.org/scale/19x
mailto:freebsd-doc@FreeBSD.org
https://freebsdfoundation.org/freebsd-fridays/
https://freebsdfoundation.org/freebsd-fridays/
https://wiki.freebsd.org/OfficeHours
https://www.youtube.com/c/FreeBSDProject
https://www.youtube.com/c/FreeBSDProject
https://opensource101.com/
https://opensource101.com/

