
39FreeBSD Journal • January/February 2022

The internet can be a lawless place, and our on-line services can be attacked in a variety of
ways. The firewalls we run can be part of the way we protect our systems, but it turns out
they can also be an avenue for attack themselves.

One way of attacking services is to exhaust system resources by pretending to open connec-
tions. This is commonly called a SYN flood, and it’s a fairly insidious attack. Let’s start by refresh-
ing our memories about how TCP connections work. Opening a TCP connection is a three-step
process:

1) �SYN: the client sends a SYN packets to indicate it wishes to open a connection. It sets an
initial sequence number in the SYN packet.

2) �SYN+ACK: the server responds, acknowledging the client sequence number, and settings its
own.

3) �ACK: the client accepts that the connection is open, and acknowledges the server’s
sequence number.

When the server receives the initial SYN it will set up internal data structures to support the
new connection. This takes CPU time and memory.

This means that malicious clients can generate SYN packets (which are small, and easy to
generate), consuming much of the server’s available memory and CPU resources. Even worse,
it only requires the single SYN packet. There’s no need for the attacker to receive the server’s
SYN+ACK reply. That means that the source IP address can be faked, making these attacks dif-
ficult to filter out. They can also be targeted at the service’s main TCP port (e.g., 443 for a web
server), making the attack indistinguishable from real client requests.

SYN cookies
In 1996 Daniel J. Bernstein and Eric Schenk came up with a method to resist such attacks,

called SYN cookies. Simply put, SYN cookies ensure the server does not run out of memory by
not allocating any memory for the new connection when we receive a SYN packet.

We still generate a SYN+ACK reply, but wait to create server-side state until the client has
responded to our SYN+ACK with its own ACK. This ensures that the client really exists (i.e., the
source IP address is not spoofed).

The obvious issue with this is that we still need the information we’d normally save when
the SYN first arrives. This information includes things like Maximum Segment Size (MSS) and
Window Scale (WSCALE). While these options are … well optional, they are important for TCP
performance, and we don’t want to refuse them.

BY KRISTOF PROVOST

1 of 7

Porting OpenBSD’s
		 pf syncookie Code
	 to FreeBSD’s pf

40FreeBSD Journal • January/February 2022

Furthermore, we also need some way of ensuring that the acknowledgement number in the cli-
ent’s ACK matches the sequence number we used in the SYN+ACK message. If we didn’t check this,
malicious clients could simply send a SYN, wait a little while and send an ACK blind, that is, without
having to actually receive the server’s SYN+ACK using a random acknowledgement number.

So, how do we accomplish this? We do so by encoding all the options into the sequence
number of the SYN+ACK packet.

In the pf implementation, this is done in pf_syncookie_generate():

 uint32_t
 pf_syncookie_generate(struct mbuf *m, int off, struct pf_pdesc *pd,
 uint16_t mss)
 {
 uint8_t i, wscale;
 uint32_t iss, hash;
 union pf_syncookie cookie;

 PF_RULES_RASSERT();

 cookie.cookie = 0;

 /* map MSS */
 for (i = nitems(pf_syncookie_msstab) - 1;
 pf_syncookie_msstab[i] > mss && i > 0; i--)
 /* nada */;
 cookie.flags.mss_idx = i;

 /* map WSCALE */
 wscale = pf_get_wscale(m, off, pd->hdr.tcp.th_off, pd->af);
 for (i = nitems(pf_syncookie_wstab) - 1;
 pf_syncookie_wstab[i] > wscale && i > 0; i--)
 /* nada */;
 cookie.flags.wscale_idx = i;
 cookie.flags.sack_ok = 0; /* XXX */

 cookie.flags.oddeven = V_pf_syncookie_status.oddeven;
 hash = pf_syncookie_mac(pd, cookie, ntohl(pd->hdr.tcp.th_seq));

 /*
 * Put the flags into the hash and XOR them to get better ISS number
 * variance. This doesn’t enhance the cryptographic strength and is
 * done to prevent the 8 cookie bits from showing up directly on the
 * wire.
 */
 iss = hash & ~0xff;
 iss |= cookie.cookie ^ (hash >> 24);

 return (iss);
 }

2 of 7

41FreeBSD Journal • January/February 2022

The eagle-eyed reader will note that for both MSS and WSCALE we don’t actually encode
the correct value, but instead find the closest match in a lookup table. This reduces the number
of bits needed to encode the information, but still gets us a good approximation of the real val-
ue. Having a slightly smaller maximum segment size or window scale will cost us a little perfor-
mance, but not significantly so. The values are chosen so that the most frequently used MSS or
WSCALE values are represented, so for most clients there will be no performance loss at all.

This information is encoded into an authenticated hash. That is, to recreate the hash you
need both the input information (MSS, WSCALE, ...) and a secret key. In other words: attackers
cannot predict the result of the hash, and consequently cannot predict the sequence number
the server will choose. That’s handled by the pf_syncookie_mac() function:

 uint32_t
 pf_syncookie_mac(struct pf_pdesc *pd, union pf_syncookie cookie, uint32_t seq)
 {
 SIPHASH_CTX ctx;
 uint32_t siphash[2];

 PF_RULES_RASSERT();
 MPASS(pd->proto == IPPROTO_TCP);

 SipHash24_Init(&ctx);
 SipHash_SetKey(&ctx, V_pf_syncookie_status.key[cookie.flags.oddeven]);

 switch (pd->af) {
 case AF_INET:
 SipHash_Update(&ctx, pd->src, sizeof(pd->src->v4));
 SipHash_Update(&ctx, pd->dst, sizeof(pd->dst->v4));
 break;
 case AF_INET6:
 SipHash_Update(&ctx, pd->src, sizeof(pd->src->v6));
 SipHash_Update(&ctx, pd->dst, sizeof(pd->dst->v6));
 break;
 default:
 panic(“unknown address family”);
 }

 SipHash_Update(&ctx, pd->sport, sizeof(*pd->sport));
 SipHash_Update(&ctx, pd->dport, sizeof(*pd->dport));
 SipHash_Update(&ctx, &seq, sizeof(seq));
 SipHash_Update(&ctx, &cookie, sizeof(cookie));
 SipHash_Final((uint8_t *)&siphash, &ctx);

 return (siphash[0] ^ siphash[1]);
 }

With the resulting hash post-processed we have enough information to send the server’s
SYN+ACK response.

3 of 7

42FreeBSD Journal • January/February 2022

At this point pf processing stops. We do not create state, we do not perform any further ex-
amination of the packet. This also means that if the firewall protects a different host (i.e., it’s
running on a router between the client and server) the server will not even be aware that the
client has attempted to initiate a new connection. We want that because it means the server is
protected from SYN floods, without needing any code or configuration changes.

If the client never responds, nothing happens. The server has remembered nothing about
this specific SYN message and has no memory allocated to it. If on the other hand the client
does respond (i.e., is a legitimate client, at least for the purpose of this discussion), we must re-
construct the information we’ve not retained when we received the original SYN message.

Upon receiving a SYN+ACK message we first validate it in pf_syncookie_validate():

uint8_t
pf_syncookie_validate(struct pf_pdesc *pd)
{
 uint32_t hash, ack, seq;
 union pf_syncookie cookie;

 MPASS(pd->proto == IPPROTO_TCP);
 PF_RULES_RASSERT();

 seq = ntohl(pd->hdr.tcp.th_seq) - 1;
 ack = ntohl(pd->hdr.tcp.th_ack) - 1;
 cookie.cookie = (ack & 0xff) ^ (ack >> 24);

 /* we don’t know oddeven before setting the cookie (union) */
 if (atomic_load_64(&V_pf_status.syncookies_inflight[cookie.flags.oddeven])
 == 0)
 return (0);

 hash = pf_syncookie_mac(pd, cookie, seq);
 if ((ack & ~0xff) != (hash & ~0xff))
 return (0);

 counter_u64_add(V_pf_status.lcounters[KLCNT_SYNCOOKIES_VALID], 1);
 atomic_add_64(&V_pf_status.syncookies_inflight[cookie.flags.oddeven], -1);

 return (1);
}

We check that the cookie contains the correct authentication string. If it does, we contin-
ue into pf_syncookie_recreate(), where we reconstruct the original SYN packet. This isn’t
strictly required for the syncookie system itself, but we need to tell pf about the SYN packet
we’d originally discarded so it can create the relevant state entries.

This also allows pf to continue processing, and potentially forwards the reconstituted SYN
packet to the remote server. The remote server would then reply with its own SYN+ACK pack-
et, with a different sequence number from ours. pf will have to modify the sequence and ac-

4 of 7

43FreeBSD Journal • January/February 2022

knowledgement numbers on all traffic between client and server. Happily, this is standard func-
tionality for pf.

At this point the connection is fully established on both sides, and it does not meaningfully
differ from a connection set up without syncookies. No special action is taken on connection
shutdown because this does not present new opportunities for a malicious client to generate
memory pressure.

Downsides
So far, we’ve discussed how syncookies help us, but we’ve not spent much time any draw-

backs. Does that mean that there are none? Sadly, no.
We’ve already talked about MSS and WSCALE. With syncookies we are unable to reflect the

proposed value from the client with full fidelity. This
may mean that for some clients we leave some TCP
performance on the table. In most cases this is not
something to worry about.

Another downside is implicit in how syncookies
work: we unconditionally reply SYN+ACK to the SYN
packet. Even if the port is actually closed. That means
that the client may think opening the connection is
working, until it’s fully established, only to receive an
RST afterwards. That’s not ideal and may provoke un-
expected client behavior. That is, this may look differ-
ent from a “normal” failure to connect to users.

This can be mostly mitigated by ensuring that the
firewall immediately rejects packets to closed ports.
That’s generally a good idea anyway, and it goes dou-
bly so if syncookies are enabled.

Another downside is that there’s no retransmit mechanism for lost SYN+ACK packets. There
couldn’t be, because as soon as we send the SYN+ACK we forget everything about it. This isn’t
too much of a concern because the client will just assume its SYN packet got lost and retrans-
mit that. That will lead the server to generate a new SYN+ACK, which will hopefully not get
lost this time.

A final thing to bear in mind is that syncookies are not magic. They work well against SYN-
flood attacks, but they cannot protect against other attacks. For example, if a specially crafted
HTTP request consumes excessive system resources in the web server, this will not be stopped
by syncookies.

There’s also nothing to stop a motivated attacker from initiating connections from many dif-
ferent client IP addresses without spoofing the source address. In that case, the attacker can still
potentially open enough connections to exhaust the server’s resources. However, syncookies
make this much more expensive for the attacker. A SYN flood can be performed from a single
attacking host, with moderate bandwidth requirements. An attack that has the same effect us-
ing non-spoofed, TCP connections will require many more attacking hosts.

History
The FreeBSD pf syncookie code was adapted from the pf syncookie code in OpenBSD’s

pf. This code was originally written by Henning Brauer in 2018 with help from Alexandr
Nedvedicky.

With syncookies we are

unable to reflect the

proposed value from the

client with full fidelity.

5 of 7

44FreeBSD Journal • January/February 2022

The OpenBSD pf syncookie code was based on syncookie code in FreeBSD’s TCP stack, origi-
nally developed by Jonathan Lemon in 2001 (a9c96841638186f2e8d10962b80e8e9f683d0cbc).

It looks like the OpenBSD commit message is incorrect in its attribution to Andre Op-
permann. Andre did make significant improvements to the syncookie code in 2013
(81d392a09de0f2eeabaf68787896863eb9c370a8), which is probably where the misunder-
standing came from.

Implementation Notes
While OpenBSD and FreeBSD’s pf versions have diverged a bit over the years the similarities

still greatly outweigh the differences. As such, porting OpenBSD pf features to FreeBSD is often
relatively straightforward. The main stumbling block is the different approaches in locking strat-
egy. OpenBSD’s pf, like OpenBSD’s network stack, is protected by a single lock (NET_LOCK).
This has the advantage of great simplicity but does
come with some performance drawbacks.

FreeBSD’s pf takes a much more complex approach
to locking, but does get better performance in return.

This turned out to be relevant for the adap-
tive mode. Other aspects of the syncookie code fit
neatly into the existing locking approach. Howev-
er, OpenBSD’s approach of incrementing and decre-
menting a single counter value to track the number of
half-open states and in-flight syncookie packets. This
required the use of atomic operations in FreeBSD be-
cause there’s no equivalent NET_LOCK and multiple
cores can be processing TCP SYN or other packets at
the same time.

While this ensures we do not under or over count
the number of half-open states or in-flight syncookie
packets, it is still imperfect. The retrieval of the values is
atomic, but as we retrieve multiple values, they do not
always reflect a perfect snapshot. Happily, there is no requirement for strict correctness here.
The worst case is that we enable or disable syncookies slightly early or late. As both syncook-
ie-mediated and normal connections can be established at the same time, this is not a notice-
able concern for users.

Configuration
After all of that, readers could be forgiven for assuming that the configuration of syncookies

is a complicated affair, but this is not the case. There’s only one required line, in the options sec-
tion of pf.conf:

 set syncookies always

or

 set syncookies adaptive

While OpenBSD and

FreeBSD’s pf versions have

diverged a bit over the years

the similarities still greatly

outweigh the differences.

6 of 7

45FreeBSD Journal • January/February 2022

The first will always respond to SYN packets with a syncookie SYN+ACK. In adaptive mode
pf will only do so when a lot of connections are in half-open state. That is, we’ve replied SYN-
+ACK to an ACK message and are waiting for the ACK in response. This ideally combines
the best of both worlds: we get all the advantages of normal TCP connection processing (i.e.,
full-option negotiation, immediate feedback when the connection cannot be opened) but with
some protection against SYN floods.

Adaptive mode, low and high water marks (i.e. where we disable and enable syncookies re-
spectively) can be configured as well:

 set syncookies adaptive (start 25%, end 12%)

The values are expressed as percentages of the state table size. If no syncookie configuration
line is present the feature will default to being disabled. This means there is no change in be-
havior unless users explicitly enable syncookies.

Conclusion
Are syncookies right for you? They may be if your systems are attacked by SYN floods. If

they are not you may want to leave them disabled, but even so, it’s good to know they exist.
SYN floods are a very old type of attack, but as long as they work, even occasionally, attackers
may decide to use them. Defenders must be ready with appropriate tools.

The new pf syncookie feature is already present in the recent 12.3 release, and will also be
present in the upcoming 13.1 release.

The effort to port the OpenBSD pf syncookie code to FreeBSD’s pf was sponsored by Modi-
rum MDPay.

KRISTOF PROVOST is a freelance embedded software engineer specializing in network and
video applications. He’s a FreeBSD committer, maintainer of the pf firewall in FreeBSD and a
board member of the EuroBSDCon foundation. Kristof has an unfortunate tendency to stumble
into uClibc bugs, and a burning hatred for FTP. Do not talk to him about IPv6 fragmentation.

7 of 7

https://opensource101.com/

