
14FreeBSD Journal • March/April 2022

ARM64 is a single architecture that is used in an extremely wide range of products — it can be
found in the smallest embedded devices, but also in mobile devices, enterprise units and even
server-grade solutions. The support for the latter imposes certain standards, e.g., the way of
booting, interactions with firmware or a platform description. It turnes out this model also fits
non-server devices. Let’s see how they are supported in FreeBSD, with a focus on handling the
embedded controllers in the ACPI world.

Dealing With the Problematic Legacy
When introduced almost a decade ago, the 64-bit variant of ARM directly inherited the eco-

system from its 32-bit predecessor, which had been reigning in the embedded market. Howev-
er, the usual need of maintaining a fully customized board support package for each platform
was a real burden for development of the new archi-
tecture. To some extent, the device tree (DT) adoption
allowed for better portability and using a single kernel
image for various devices, but it did not suffice to solve
the problem entirely. This kind of description is very
flexible, which was, unfortunately, often abused by ven-
dors and resulted in inconsistent bindings over the time.
Even today, it is not uncommon that the device tree
blob for U-Boot differs from the one used for booting
the OS (they describe the same hardware!), and of-
ten also lacks backward compatibility. With such con-
straints, reaching a long-term goal of a wide software
ecosystem and multi-OS support would be problematic.

However, the solution was out there and existed for
years. The interfaces used in the x86 world were adopted and extended for ARM64, namely
the boot process, EFI, SMBIOS and ACPI. With the server-grade devices that comply with the
standards and use proper firmware, it is now possible to install FreeBSD and other OSs or hy-
pervisors out of the box, simply by using installer images. What about smaller, embedded plat-
forms? Fortunately they can also leverage the rich ecosystem the same way. There are condi-
tions though — the hardware must not deviate from the standards (at least not too much) and

BY MARCIN WOJTAS

1 of 7

ACPI Support for
Embedded Controllers

When introduced almost a

decade ago, the 64-bit variant

of ARM directly inherited

the ecosystem from its

32-bit predecessor.

15FreeBSD Journal • March/April 2022

there are also strict requirements related to firmware. The guidelines are gathered into specifi-
cations, consecutively: the BSA (ARM Base System Architecture) and the BBR (ARM Base Boot
Requirements). Result — there are ARM64 platforms that can successfully boot the FreeBSD,
Windows and multiple Linux distributions, using a single firmware image and ACPI description.

What is special about those devices? Compared to the servers, which traditionally have a sig-
nificant amount of CPUs, DRAM and PCIE root complexes, in the embedded segment the SoCs
also support a wide variety of controllers attached to their internal buses. Therefore, they are
not discovered during PCIE enumeration, but require a different treatment. A hardware descrip-
tion must comprise an explicit reference to these interfaces, including the platform data that
can be parsed and interpreted by the OS. Recently, the FreeBSD kernel’s ability to obtain such
information from ACPI tables was extended with some new features.

What is ACPI?
Before jumping to details, it may be worth briefly explaining what the ACPI is — it is an in-

terface between the firmware and OS, used for describing and configuring the hardware. The
standard has been developed for almost 3 decades and lists a number of main concepts, i.e.,
various aspects of power management, thermal/battery handling, hardware configuration and
embedded controllers’ description. It also defines an ACPI Source Language (ASL), which among
others allows for creating low-level hardware configuration routines. It is compiled to a bytecode
— ACPI Machine Language (AML), that can be interpreted and executed by the kernel.

The information about a platform is gathered in so-called ‘tables,’ which are, in fact, a hi-
erarchy of structures in the system’s memory address space. The starting point of ACPI is Root
System Description Pointer (RSDP) structure — it is configured by firmware and points to Ex-
tended System Description Table (XSDT), which further branches out to secondary tables. The
first one is always Fixed ACPI Description Table (FADT) — it comprises various fixed-length en-
tries that describe the fixed ACPI features of the hardware.

Fig1. Root System Description Pointer and Table.
Source: https://uefi.org/specs/ACPI/6.4/05_ACPI_Software_Programming_Model/ACPI_Software_Program-
ming_Model.html#overview-of-the-system-description-table-architecture

The ACPI specification defines a number of dedicated tables, however a couple of them can
be considered as being more significant in the embedded devices context, e.g.,

2 of 7

https://developer.arm.com/documentation/den0094/latest
https://developer.arm.com/documentation/den0044/latest
https://uefi.org/specs/ACPI/6.4/index.html
https://uefi.org/specs/ACPI/6.4/03_ACPI_Concepts/ACPI_Concepts.html#acpi-concepts
https://uefi.org/specs/ACPI/6.4/19_ASL_Reference/ACPI_Source_Language_Reference.html
https://uefi.org/specs/ACPI/6.4/20_AML_Specification/AML_Specification.html
https://uefi.org/specs/ACPI/6.4/05_ACPI_Software_Programming_Model/ACPI_Software_Programming_Model.html#overview-of-the-system-description-table-architecture
https://uefi.org/specs/ACPI/6.4/05_ACPI_Software_Programming_Model/ACPI_Software_Programming_Model.html#overview-of-the-system-description-table-architecture
https://uefi.org/specs/ACPI/6.4/05_ACPI_Software_Programming_Model/ACPI_Software_Programming_Model.html#acpi-system-description-tables

16FreeBSD Journal • March/April 2022

•	Generic Timer Description Table (GTDT)
•	Multiple APIC Description Table (MADT)
•	Processor Properties Topology Table (PPTT)
•	Serial Port Console Redirection Table (SPCR)
•	PCI Express Memory-mapped Configuration Space base address description table (MCFG)
•	Differentiated System Description Table (DSDT)
The last of the mentioned tables is particularly important. The DSDT is always referenced by

FADT and comprises the list of CPUs, power management features, PCIE root complex and all
other embedded controllers description. It often comes with SSDT (Secondary System Descrip-
tion Table) — in single or multiple instances, this structure allows the programmer to logically
split various functionalities in the platform description code.

The definitions of the above tables were extended to cover ARM64-specific values and
types (e.g., interrupt controllers) — all gathered in ACPICA (ACPI Component Architecture). It
is an open source reference code, used and supplemented by OSs. The FreeBSD is maintained
to always be on par with the latest version of it. Let’s check how the tables are handled in the
ARM64 port.

ACPI for ARM64 — the Base Part
The ARM64 SoCs are described by the ACPI tables according to the standards, i.e., the tim-

ers and watchdogs are listed in GTDT, the interrupt controller can be found in MADT — cur-
rently only GICv2 and GICv3 are supported. Going further to the embedded controllers, the
console is described by SPCR (and optionally by the additional DBG2 table) — using ARM SBSA
UART (PL011) or the one compatible with 16550 is rec-
ommended, although in recent years more types from
the ARM world have been added to the list.

Description of the PCIE controller is more complex
and must be enclosed in the MCFG and DSDT/SSDT ta-
bles. For ARM64 the only allowed type is the one fully
compatible with the standardized ECAM generic, sup-
ported by pci_host_generic_acpi driver. It is recom-
mended that the new designs comprise an unmodified
version of it in the silicon, but for existing products, it
is often not possible. Because of that, handling a devi-
ation from the standards is now allowed in the men-
tioned FreeBSD driver, using the configuration space ac-
cess quirks. Another solution would be to support a mechanism of executing low-level routines
from the firmware via the Secure Monitor Call Calling Convention (SMCCC) interface — cur-
rently it is available for Raspberry Pi 4, but this option remains unimplemented in FreeBSD.

Handling of the Embedded Controllers
Embedded controllers that are connected to the SoCs internal bus can be handled twofold

ways in the ACPI tables. One option is using ‘methods’ (instructions) compiled to AML, so the
OS can interpret and execute them directly, which is the case of e.g., thermal management,
SMBUS or GPIO. Other devices or subsystems that are not explicitly defined in the ACPI spec-
ification need to be described by the standard objects that are available for parsing by the OS
and obtaining all necessary hardware resources required by the kernel drivers. The latter solu-

3 of 7

It is recommended that

the new designs comprise

an umodified, generic version

of PCIE controllers

in the silicon.

https://docs.microsoft.com/en-us/windows-hardware/drivers/bringup/acpi-debug-port-table#table-3-debug-port-types-and-subtypes
https://cgit.freebsd.org/src/tree/sys/dev/pci/pci_host_generic_acpi.c
https://cgit.freebsd.org/src/commit/?id=2de4c7f6d08798fb6269582907155703d1ab5ef4
https://cgit.freebsd.org/src/commit/?id=2de4c7f6d08798fb6269582907155703d1ab5ef4
https://github.com/ARM-software/arm-trusted-firmware/commit/ab061eb732dcd2ee711b6960c37c4b25c44f3f9d
https://uefi.org/specs/ACPI/6.4/11_Thermal_Management/Thermal_management.html
https://uefi.org/specs/ACPI/6.4/12_ACPI_Embedded_Controller_Interface_Specification/smbus-devices.html
https://uefi.org/specs/ACPI/6.4/19_ASL_Reference/ACPI_Source_Language_Reference.html#gpioio-gpio-connection-io-resource-descriptor-macro

17FreeBSD Journal • March/April 2022

tion is a key to support non-server ARM64 SoCs in ACPI and is already present in the FreeBSD
kernel.

Fig 2. High level comparison of example FreeBSD bus hierarchies in ACPI and
Device Tree worlds.

In high level, the FreeBSD bus hierarchies of embedded controllers are similar for both ACPI
and DT worlds (ref. Fig. 2). It is helpful for designing the device drivers, as the platform data
structures can be filled likewise in each case during the kernel initialization phase. The probed
drivers can be later matched by the ACPI _HID field value, which can be treated as an equiva-
lent to the compatible string known from the Device Tree. The other standard types of resourc-
es are also handled in an analogous way.

The first two types of ARM64 embedded controllers supported by ACPI in FreeBSD are USB
and SATA. The latter is interesting, because it is matched with a driver in a bit of a different
way, i.e., by a device class value (ACPI _CLS object; ref. Listing 1).

 Device (AHC0)
 {
 Name (_HID, “LNRO001E”) // _HID: Hardware ID
 Name (_UID, 0x00) // _UID: Unique ID
 Name (_CCA, 0x01) // _CCA: Cache Coherency Attribute
 Method (_STA) // _STA: Device status
 {
 Return (0xF)
 }
 Name (_CLS, Package (0x03) // _CLS: Class Code
 {
 0x01,
 0x06,
 0x01
 })

4 of 7

https://cgit.freebsd.org/src/tree/sys/dev/usb/usb_generic.c
https://cgit.freebsd.org/src/tree/sys/dev/ahci/ahci_generic.c

 Name (_CRS, ResourceTemplate () // _CRS: Current Resource Settings
 {
 Memory32Fixed (ReadWrite,
 0xF2540000, // Address Base (MMIO)
 0x00030000, // Address Length
)
 Interrupt (ResourceConsumer, Level, ActiveHigh, Exclusive, ,,)
 {
 CP_GIC_SPI_CP0_SATA_H0
 }
 })
 }

Listing 1. Example AHCI controller description in ACPI table

The FreeBSD XHCI and AHCI drivers expect fully generic descriptions in DSDT/SSDT. An ex-
ample of the former is presented in Listing 1. It contains objects referring to a unique ID, in-
formation about cache coherency and memory/interrupt resources. All deviations, such as a
non-standard register configuration, clocks or power management handling have to be im-
plemented and pre-configured by firmware.

Customizing the ACPI Description
What if the controller requires a custom binding handled by its own, dedicated driver? Until

recently it was possible in FreeBSD only in the DT world, using the nodes’ properties. However,
the ACPI specification defines an optional object called _DSD (Device Specific Data), that can
contain the same information. Leveraging the FreeBSD
bus hierarchy (ref. Fig 2.), a new generic solution was
designed and implemented, to support obtaining con-
troller specific data in a description-agnostic way. Addi-
tional helper functions were introduced:

•	device_get_property
•	device_has_property
They allow access to device specific data provided by

the parent bus in a way that the consumer driver can
execute exactly the same code path, regardless of the
system booting with ACPI or DT. This solution was later
extended to cover various types of properties available
in both cases.

An example of the above was implemented in the
SD/MMC subsystem, both in a generic code and a driver for Marvell Xenon controller. The lat-
ter was divided into three files: common part and small pieces responsible for attaching either
via ACPI or as a child of simplebus. Apart from different DRIVER_MODULE/DEFINE_CLASS_1
macro usage, the latter comprises additional parsing of the regulators and card detect GPIO
pins, whereas in ACPI these are set up by firmware.

The FreeBSD XHCI and

AHCI drivers expect fully

generic descriptions in

DSDT/SSDT.

18FreeBSD Journal • March/April 2022

5 of 7

https://github.com/tianocore/edk2-platforms/blob/master/Silicon/Marvell/OcteonTx/AcpiTables/T91/Cn913xDbA/Dsdt.asl#L57
https://uefi.org/specs/ACPI/6.4/06_Device_Configuration/Device_Configuration.html#dsd-device-specific-data
https://cgit.freebsd.org/src/commit/?id=3f9a00e3b577
https://www.freebsd.org/cgi/man.cgi?query=device_get_property&apropos=0&sektion=9&manpath=FreeBSD+14.0-current&arch=default&format=html
https://cgit.freebsd.org/src/commit/?id=b344de4d0d16
https://cgit.freebsd.org/src/commit/?id=b344de4d0d16
https://cgit.freebsd.org/src/commit/?id=8a8166e5bcfb
https://cgit.freebsd.org/src/tree/sys/dev/sdhci/sdhci_xenon.c
https://cgit.freebsd.org/src/tree/sys/dev/sdhci/sdhci_xenon_acpi.c
https://cgit.freebsd.org/src/tree/sys/dev/sdhci/sdhci_xenon_fdt.c

 &ap_sdhci0 {
		 compatible = “marvell,armada-cp110-sdhci”;
 	 reg = <0x780000 0x300>;
	 interrupts = <27 IRQ_TYPE_LEVEL_HIGH>;
	 clock-names = “core”, “axi”;
 	 clocks = <&CP11X_LABEL(clk) 1 4>, <&CP11X_LABEL(clk) 1 18>;
	 dma-coherent;
 	 bus-width = <8>;
	 /*
	 * Not stable in HS modes - phy needs “more calibration”, so add
	 * the “slow-mode” and disable SDR104, SDR50 and DDR50 modes.
 	 */
 	 marvell,xenon-phy-slow-mode;
 	 no-1-8-v;
 	 no-sd;
 	 no-sdio;
 	 non-removable;
 	 status = “okay”;
 	 vqmmc-supply = <&v_vddo_h>;
 };

Listing 2. Marvell Xenon SD/MMC controller in Device Tree

 Device (MMC0)
 {
 Name (_HID, “MRVL0002”) // _HID: Hardware ID
 Name (_UID, 0x00) // _UID: Unique ID
 Name (_CCA, 0x01) // _CCA: Cache Coherency Attribute
 Method (_STA) // _STA: Device status
 {
 Return (0xF)
 }
 Name (_CRS, ResourceTemplate () // _CRS: Current Resource Settings
 {
 Memory32Fixed (ReadWrite,
 0xF06E0000, // Address Base (MMIO)
 0x00000300, // Address Length
)
 Interrupt (ResourceConsumer, Level, ActiveHigh, Exclusive, ,,)
 {
 48
 }
 })
 Name (_DSD, Package () {
 ToUUID(“daffd814-6eba-4d8c-8a91-bc9bbf4aa301”),
 Package () {

19FreeBSD Journal • March/April 2022

6 of 7

 Package () { “clock-frequency”, 400000000 },
 Package () { “bus-width”, 8 },
 Package () { “marvell,xenon-phy-slow-mode”, 0x1 },
 Package () { “no-1-8-v”, 0x1 },
 Package () { “no-sd”, 0x1 },
 Package () { “no-sdio”, 0x1 },
 Package () { “non-removable”, 0x1 },
 }
 })
 }

Listing 3. Marvell Xenon SD/MMC controller in ACPI

Listings 2. and 3. show example DT and ACPI nodes of the same controller instance, in order
to demonstrate the similarities of both descriptions. Thanks to the new FreeBSD kernel meth-
ods, the controller can successfully operate in all firmware configurations.

Conclusion
With the recent additions to the FreeBSD kernel, the contemporary ARM64 SoCs used in

the embedded products can be supported with a similar set of features both with ACPI and
the Device Tree. The hierarchical representation of custom controllers turned out to be flexi-
ble enough for most kinds of devices and subsystems also in the ACPI case. There are exam-
ples that confirm it is possible even with more sophisticated network controllers and the ge-
neric MDIO layer. Now there are no limits for FreeBSD to follow this path, especially that the
bus architecture allows doing it in a clean and elegant way, as demonstrated in the SD/MMC
example.

MARCIN WOJTAS is Head of Engineering at Semihalf and also a FreeBSD src commiter
(mw@). He is passionate about embedded software and hardware, and contributor to a num-
ber of open source projects, including Linux kernel, Tianocore EDK2 and TF-A.

Write
For Us!
Write

For Us!
Contact Jim Maurer

with your article ideas.
(jmaurer@freebsdjournal.com)

20FreeBSD Journal • March/April 2022

7 of 7

