
12FreeBSD Journal • January/February 2022

T
he FreeBSD ports tree was created in 1994 and tracked using CVS until July 15, 2012
when Subversion took over. A second repository conversion occurred on April 6, 2021
when the source of truth was migrated from Subversion to Git. As both CVS and Sub-
version are centralized version control systems, the required workflow changes associ-

ated with the first conversion were not as complex as with the conversion to Git, a distributed
version control system.

This is not a comprehensive guide to using Git. The goal of this article is to guide those
new to either Git or FreeBSD ports through a Git workflow that can be used to contribute to
FreeBSD ports. Topics covered include:

• a brief overview of important Git concepts
• staying up to date with remote repositories
• working with branches
• committing
• modifying history
• working with Phabricator reviews
• testing changes with poudriere
• keeping track of upstream releases.

For a thorough introduction, refer to the Pro Git book and the Git Primer Chapter of the
FreeBSD Committer’s Guide. Also not covered is how to work with the make specifications that
ports and the ports infrastructure are written in. This is covered in detail in the FreeBSD Porter’s
Handbook.

What makes Git fundamentally different from centralized version control systems like Subver-
sion is its support for distributed workflows. Git does not require a central server that contains
blessed copies of the versioned files because 1. copies of the repository are full clones that in-
clude meta-data and full history and 2. Git commits are snapshots of the repository rather than
delta-based changes to files. Snapshots are described using hash algorithms that take as input
the state of the repository and produce a deterministic hash value in the form of a hexadecimal
string. If two copies of the repository are in the same state, the hash values describing the cop-

BY JOSEPH MINGRONE

1 of 16

Contributing to
FreeBSD Ports with Git

https://git-scm.com/book/
https://docs.freebsd.org/en/articles/committers-guide/#git-primer
https://docs.freebsd.org/en/articles/committers-guide/#git-primer
https://docs.freebsd.org/en/books/porters-handbook/book/
https://docs.freebsd.org/en/books/porters-handbook/book/

13FreeBSD Journal • January/February 2022

ies will be the same, whereas two repositories that differ by a single bit flip will produce differ-
ent hash values. The history of a Git repository is a collection of these snapshots joined togeth-
er so that each commit points to its parent commit(s).

A Git workflow may include 1. creating a local branch to develop a new feature, 2. merging
the work in the feature branch with the main branch, and 3. pushing the changes to another
Git repository. For a FreeBSD ports contributor, a new feature might mean creating or updating
a port, or even something as simple as fixing a typo. When work in the feature branch is ready,
it can be reviewed and merged with the official FreeBSD ports repository. Git branches are well
suited for keeping the development of new features organized and isolated and their creation is
very lightweight, as it simply involves creating a new pointer to a snapshot.

Because much of the work with Git occurs locally, there is no single workflow that all con-
tributors must subscribe to. Work the way that best suits you. The official FreeBSD ports repos-
itory does enforce certain conventions though. For example, we require a simple, linear history
of commits, so that the history of the main branch under Git looks similar to how it looked un-
der Subversion. To do this, certain constraints are required, which we will discuss. Other proj-
ects use different workflows that results in parallel paths in the main branch of the repository.
In short, Git is flexible and there is no single workflow that suits all people or projects. Indeed,
as of early 2022 there is a FreeBSD working group exploring how we can optimize the way we
work with Git, so refinements may be forthcoming. With these caveats out of the way, let’s ex-
plore a Git workflow that is suitable for contributing to the FreeBSD ports tree.

Installing Git
The simplest way to get Git installed on your FreeBSD system is to use the official FreeBSD

package.

pkg install git

For more information about installing third-party software on FreeBSD, refer to the FreeBSD
Handbook Chapter on installing applications.

Cloning the Ports Tree
If you would like to contribute a new port to the tree, but do not already have something in

mind, you can start by scanning the list of requested ports on the FreeBSD Wiki. Suppose we
wish to create a new port for an application currently on the list, the Nyxt browser. The first
step is to clone the FreeBSD ports repository. If you are using ZFS, you may wish to create a
dedicated dataset for your development ports tree.

zfs create zroot/usr/home/ashish/freebsd/ports

Of course, substitute zroot/usr/home/ashish/freebsd/ports for your dataset layout.
Now clone the repository. You are downloading the entire repository, which includes over
40,000 ports and a 28-year history, so this will take some time.

 git clone -o freebsd --config remote.freebsd.fetch=+refs/notes/*:refs/notes/*
https://git.freebsd.org/ports.git ~/freebsd/ports

2 of 16

https://docs.freebsd.org/en/books/handbook/ports/
https://docs.freebsd.org/en/books/handbook/ports/
https://wiki.freebsd.org/WantedPorts
https://nyxt.atlas.engineer/

14FreeBSD Journal • January/February 2022

The -o freebsd sets the name for the default remote repository for collaboration (pulling and
pushing changes). The --config remote.freebsd.fetch=+refs/notes/*:refs/notes/*.
adds Subversion revision numbers to the notes field of commits that occurred prior to the con-
version to Git. When the clone is finished, you can optionally create a child ZFS dataset where
software distribution files will be stored when building ports.

zfs create zroot/usr/home/ashish/ports/distfiles

Unlike the ports themselves, which are mostly text files, the software distribution files are usual-
ly already compressed, so zfs compression can be turned off for the zroot/usr/home/ashish/
freebsd/ports/distfiles dataset.

zfs set compression=off zroot/usr/home/ashish/freebsd/ports/distfiles

You have a few options for telling make(1) about the location of your ports tree. The first op-
tion is to add configuration to /etc/make.conf.

.if ${.CURDIR:M/usr/home/ashish/freebsd/ports/*}
PORTSDIR=/usr/home/ashish/freebsd/ports
.endif

An alternative method is to set the PORTSDIR environment variable. For example, if your shell is
zsh, you can add the line below to ~/.zshrc.

export PORTSDIR=/usr/home/ashish/freebsd/ports

If you plan on working with multiple ports trees, a tool like sysutils/direnv is useful for
loading or unloading environment variables depending on the current directory.

Staying Up to Date
The ports tree is actively developed, so changes will be pushed frequently to git.freebsd.org/

ports.git. To fetch the changes that occurred in the upstream FreeBSD repository, use

git -C ~/freebsd/ports fetch freebsd

Fetching gives you an opportunity to inspect what changes have been made before integrat-
ing those changes into a local branch. Here -C ~/freebsd/ports instructs Git to operate on
the repository under ~/freebsd/ports. If the current working directory is ~/freebsd/ports,
which from this point on is assumed, this flag can be omitted. The freebsd argument means
fetch from that remote repository.

To list the commits that were pushed to freebsd’s main branch that are not part of the lo-
cal main branch, run

git log --oneline main..freebsd/main

3 of 16

https://www.freebsd.org/cgi/man.cgi?make(1)
https://www.freshports.org/sysutils/direnv/

15FreeBSD Journal • January/February 2022

Beside the topmost hash, you will see two pointers, freebsd/main and freebsd/HEAD. HEAD
is normally a pointer to the last commit in the branch and in this case, like freebsd/main, it
points to the last commit in the main branch of the remote repository. If we run

git log --oneline freebsd/main

and continue down the list of commits, we will eventually see HEAD and main which both point
to the last commit on the local main branch. To integrate the new commits from freebsd/
main into our local main branch, run

git merge freebsd/main --ff-only

The --ff-only (fast-forward only) option means only integrate the work from freebsd/main
into main if it can be done by moving the main branch pointer to point to the same commit as
freebsd/main. This can only happen when the commits listed in the output of

git log --oneline main..freebsd/main

descend from the local main branch. If changes have been made to the local main branch that
are not part of freebsd/main, --ff-only will cause the merge to fail. In the workflow de-
scribed here, we will never make direct changes to the local main branch, so this should never
be a problem, but to be safe, we can configure the merge command to always use --ff-only
with

git config merge.ff only

As a convenience, there is a pull command that will do both the fetch and merge. Depend-
ing on the circumstances, using pull may not be wise, because you do not get the opportuni-
ty to inspect what will be integrated into your local branch. If the commits in the main branch
of your ports repository are always a subset of the commits in freebsd/main (as recommend-
ed here), this is less of a concern. To reduce the chances of diverging from freebsd/main
when using git pull, we can configure the command to only do fast-forward merges as well
with

git config pull.ff only

Creating a Local Branch
Now that we can keep our repository copy up-to-date with git.freebsd.org/ports.git,

let’s create changes. This is where Git really shines with the use of local branches, which pro-
vide a clean and efficient way to keep work-in-progress organized. Start by creating a new fea-
ture branch to work on the new nyxt port.

git branch nyxt

Now switch to the nyxt branch using

4 of 16

https://docs.freebsd.org/en/books/porters-handbook/new-port/

16FreeBSD Journal • January/February 2022

git checkout nyxt

A shorthand for both creating and switching to a branch is

git checkout -b nyxt

To check which branch you have checked out, you can run

git branch --show-current

You may find it useful to display the current branch in your shell prompt. If your shell is zsh,
you can use shells/git-prompt.zsh from the ports tree. A nice feature of git-prompt-zsh
is that it updates the prompt asynchronously, so when git status or some other Git opera-
tion is taking time to complete, it doesn’t block other work. If this appeals to you and you use a
shell other than zsh, there are similar code snippets to get Git status information in your prompt
if your shell is bash, fish, or tcsh.

First Commit
After you have hacked on your new port, it is time to commit your changes. First, let’s take a

look at the status of the working tree with

git status

Depending on what work you did, this may tell you that the file www/Makefile was modified
when you added SUBDIR += nyxt and you should also see www/nyxt as untracked. When in-
teracting with the filesystem under the repository by adding, editing, or removing files, you are
interacting with Git’s working tree. Before you can commit changes to the repository, you have
to stage which changes will be included in the next snapshot. In Git terminology, you add files
from your working tree to the index. This extra step is useful, because it gives you precise con-
trol over what goes into a commit. To add all the changes to the index, run

git add www/Makefile www/nyxt

Now git status will list all the modified or added files as staged and ready to be committed.
Before we commit though, there are a few more one-time tasks to complete. Git has a hook
feature, which is a way to execute custom scripts when certain events like committing or merg-
ing occur. To configure Git to search the location where ports-specific hooks are stored in the
ports repository, with the current working directory anywhere under the repository, run

git config --add core.hooksPath .hooks

That directory contains the prepare-commit-msg hook, which provides a helpful template for
formatting commit messages. We also want to configure the editor that will be launched to
create commit messages. Git chooses the editor to launch in this order: the value of the GIT_
EDITOR environment variable, its core.editor configuration variable, the VISUAL environment

5 of 16

https://www.freshports.org/shells/git-prompt.zsh/
https://github.com/magicmonty/bash-git-prompt
https://fishshell.com/docs/current/cmds/fish_git_prompt.html
https://gist.github.com/nicwolff/2925803

17FreeBSD Journal • January/February 2022

variable, and the EDITOR environment variable. For example, we can tell Git to use terminal
Emacs to edit commit messages with

git config core.editor “emacs -nw”

If you would like to use this editor for all your Git repositories, add the --global option when
setting core.editor.

git config --global core.editor “emacs -nw”

To commit your changes run

git commit

Your editor should now be displaying the commit template, which provides tips for creating a
commit message. The subject line should take the form <part of the ports tree that is
changing>: <brief overview of the change> and ideally be under 50 characters. A good
subject line might be www/nyxt: (WIP) First attempt to port Nyxt browser. After a
blank line, the body of the commit message provides more detail. An example might be

Makefile is still a skeleton.
TODO:
- Add _DEPENDS
- Add license information
- Fix QL_DEPS
- Add do-build target

After saving and exiting the editor your changes will be committed. So far, our changes pro-
gressed from the working tree, to the staging area (index), and finally to the local repository.
To inspect your commit, use git log, which will also confirm that the HEAD and nyxt pointers
have advanced one commit ahead of the main branch pointer.

Rewriting Local History
Whereas committing with Subversion meant sending your changes to the server, commit-

ting in Git simply means recording your changes locally in a new snapshot. Thus, with Git, it is
wise to commit often. When it is time to share your work with others, you can refine your local
history. There are a few different ways to rewrite history. For example, if you see a typo in your
latest commit message, this is a good time to fix it, since your changes are still local. To modify
the most recent commit, run

git commit --amend

and amend the commit message in your editor. If you accidentally did not stage and commit
your changes to www/Makefile in the last commit, simply stage that file before running git
commit --amend and it will be added to the last commit. Methods for rewriting history be-
yond the most recent commit will be discussed later.

6 of 16

18FreeBSD Journal • January/February 2022

Testing
Before requesting a review, your new port must be tested. There are two port linters that

can alert you about common violations. Install them with

pkg install portlint portfmt

To lint your port with portlint, from ~/freebsd/ports/www/nyxt, run

portlint -AC

To lint your port with portclippy from the portfmt package, also from ~/freebsd/ports/www/
nyxt, run

portclippy Makefile

Be aware, while these tools are generally quite helpful, they do not catch all mistakes and they
can occasionally make ill-advised suggestions. Another useful tool is portfmt. As the name
suggests, it can help with formatting your port’s Makefile.

portfmt -D Makefile

Testing with Poudriere
Section 3.4 of the Porter’s Handbook describes steps to test your port. It also refers readers

to Chapter 10, which includes a guide for setting up poudriere, FreeBSD’s bulk package build-
er and port tester. That section describes the merits of testing with poudriere. “[Various] tests
are done automatically when running poudriere testport. It is highly recommended that every
ports contributor install and test their ports with it.” That Chapter of the Porter’s Handbook de-
scribes a few different ways to set up a ports tree for poudriere. When you reach that section,
it makes sense to tell poudriere to use our existing ports tree with

poudriere ports -c -m null -M ~/freebsd/ports

The -m option tells poudriere to use the null method, i.e., use an existing ports tree found at
the location specified as the argument to -M. Using the null method means that we will manu-
ally manage the tree, including keeping it up-to-date and checking out the appropriate branch
when testing. Once you have poudriere set up, you can test your port. If you created a jail
named 13amd64, you can test the new port in that jail with

poudriere testport -j 13amd64 www/nyxt

Ideally you should test your port on the various tier 1 platforms (currently 12i386, 12amd64,
13amd64, and 13arm64). To test your new port after building it, poudriere can build a package
and leave the jail running with the package installed.

7 of 16

https://docs.freebsd.org/en/books/porters-handbook/book/#porting-testing
https://docs.freebsd.org/en/books/porters-handbook/testing/index.html
https://www.freebsd.org/cgi/man.cgi?poudriere
https://www.freebsd.org/platforms/

19FreeBSD Journal • January/February 2022

poudriere bulk -i -j 13amd64 <category>/<port>

It’s -i that instructs poudriere to leave the jail running with the package installed. This is useful
for testing terminal applications, but not graphical applications like nyxt.

If the port has OPTIONS, poudriere will test and build the package as the official package
builder will, i.e., with the default OPTIONS chosen. If you want to test or build the package
with non-default options, you can run

poudriere options -j 13amd64 www/nyxt

before poudriere testport... or poudriere bulk....
Poudriere also creates a repository that pkg can use to install packages. If you want to install

the package on the same system as poudriere, you have to configure pkg to use it. From PKG.
CONF(5), a local configuration can be placed under /usr/local/etc/pkg/repos/. The name
of the file is not important, but it must have a .conf suffix. To set a local repository configu-
ration and disable the default official repository configured in /etc/pkg/FreeBSD.conf,
create /usr/local/etc/pkg/repos/local.conf with

FreeBSD: {
 enabled: no
}
Poudriere: {
 url: “file:///usr/local/poudriere/data/packages/13amd64-default”
}

The path given above assumes poudriere’s default repository location, the repository based on
the 13amd64 jail, and the default ports tree.

If you want to serve packages to remote hosts, you will need to configure a web server.
Poudriere also has a web interface that can display information about current and past builds. If
your webserver is nginx, you can configure it to host poudriere’s interface and repository with a
server entry like this in nginx.conf.

server {
 listen 80 accept_filter=httpready;
 listen 443 ssl;

 server_name pkg.example.org;

 root /usr/local/share/poudriere/html;

 ssl_certificate /usr/local/etc/dehydrated/certs/example.org/fullchain.pem;
 ssl_certificate_key /usr/local/etc/dehydrated/certs/example.org/privkey.pem;

 # If you use dehydrated as a Lets Encrypt client
 location /.well-known/acme-challenge {

8 of 16

https://www.freebsd.org/cgi/man.cgi?pkg.conf(5)
https://www.freebsd.org/cgi/man.cgi?pkg.conf(5)

20FreeBSD Journal • January/February 2022

 alias /usr/local/www/dehydrated;
 }

 location /data {
 alias /usr/local/poudriere/data/logs/bulk;

 # Allow caching dynamic files but ensure they get rechecked
 location ~* ^.+\.(log|txz|tbz|bz2|gz)$ {
 add_header Cache-Control “public, must-revalidate, proxy-revalidate”;
 }

 # Don’t log json requests as they come in frequently and ensure
 # caching works as expected
 location ~* ^.+\.(json)$ {
 add_header Cache-Control “public, must-revalidate, proxy-revalidate”;
 access_log off;
 log_not_found off;
 }

 # Allow indexing only in log dirs
 location ~ /data/?.*/(logs|latest-per-pkg)/ {
 autoindex on;
 }

 break;
 }

 location /repo {
 alias /usr/local/poudriere/data/packages;
 autoindex on;
 }
}

If you want to display poudriere’s package building logs in the browser, tell nginx about text
files with a .log suffix by editing the text/plain line in Nginx’s mime.types to contain

text/plain log txt;

After restarting nginx with service nginx restart, point your browser to http://pkg.ex-
ample.org to see poudriere’s web interface.

Rewriting History to Prepare for Review
Before sharing your work, the commit history should be well organized, including the com-

mit logs and the number of commits. Suppose the history on your nyxt branch contains seven
WIP (work in progress) commits.

9 of 16

21FreeBSD Journal • January/February 2022

% git log --oneline
061be9ca5d98 (HEAD -> nyxt) www/nyxt: (WIP) ready for testing
cddad2b5886b www/nyxt: (WIP) Add missing www/Makefile entry
e42f79383312 www/nyxt: (WIP) Add build and install targets
807099e08e33 www/nyxt: (WIP) Fix QL_DEPENDS
3cc5f266b434 www/nyxt: (WIP) Complete _DEPENDS
80d098cd8367 www/nyxt: (WIP) Add license information
9ec91c5fb244 www/nyxt: (WIP) First attempt to port Nyxt browser
9f77e9601564 (freebsd/main, freebsd/HEAD, main) net-im/toxic: upgrade to v0.11.2

The commits above the freebsd/main, freebsd/HEAD, and main pointers are those in your
nyxt branch that you want to clean up.

git rebase -i main

will show a log of the commits in your local nyxt branch. The -i option means the rebase will
be interactive. We specify the commit preceding the subset of commits we wish to modify. In
this case it is easiest to specify that commit with the main pointer. We could have also used til-
de syntax, i.e., HEAD~7 which means seven commits before HEAD, but it’s tedious to count the
seven commits.

This is what you should see in your editor.

pick 9ec91c5fb244 www/nyxt: (WIP) First attempt to port Nyxt browser
pick 80d098cd8367 www/nyxt: (WIP) Add license information
pick 3cc5f266b434 www/nyxt: (WIP) Complete _DEPENDS
pick 807099e08e33 www/nyxt: (WIP) Fix QL_DEPENDS
pick e42f79383312 www/nyxt: (WIP) Add build and install targets
pick cddad2b5886b www/nyxt: (WIP) Add missing www/Makefile entry
pick 061be9ca5d98 www/nyxt: (WIP) Ready for testing

Rebase 9f77e9601564..061be9ca5d98 onto 9f77e9601564 (7 commands)

Commands:
p, pick <commit> = use commit
r, reword <commit> = use commit, but edit the commit message
e, edit <commit> = use commit, but stop for amending
s, squash <commit> = use commit, but meld into previous commit
f, fixup [-C | -c] <commit> = like “squash” but keep only the previous
commit’s log message, unless -C is used, in which case
keep only this commit’s message; -c is same as -C but
opens the editor
x, exec <command> = run command (the rest of the line) using shell
b, break = stop here (continue rebase later with ‘git rebase --continue’)
d, drop <commit> = remove commit
l, label <label> = label current HEAD with a name

10 of 16

22FreeBSD Journal • January/February 2022

t, reset <label> = reset HEAD to a label
m, merge [-C <commit> | -c <commit>] <label> [# <oneline>]
. create a merge commit using the original merge commit’s
. message (or the oneline, if no original merge commit was
. specified); use -c <commit> to reword the commit message

These lines can be re-ordered; they are executed from top to bottom.

If you remove a line here THAT COMMIT WILL BE LOST.

However, if you remove everything, the rebase will be aborted.

The history is written so that older commits are at the top. The comments below list all the
commands we can use. We instruct Git on to how to modify history by placing these com-
mands next to the commits. The default command beside each commit is pick, i.e., keep the
commit as is. Here, we want to squash these WIP commits into a single commit for review. To
squash the six latest commits into the first commit, change the pick command to squash in
these bottom six commits.

pick 9ec91c5fb244 www/nyxt: (WIP) First attempt to port Nyxt browser
squash 80d098cd8367 www/nyxt: (WIP) Add license information
squash 3cc5f266b434 www/nyxt: (WIP) Complete _DEPENDS
squash 807099e08e33 www/nyxt: (WIP) Fix QL_DEPENDS
squash e42f79383312 www/nyxt: (WIP) Add build and install targets
squash cddad2b5886b www/nyxt: (WIP) Add missing www/Makefile entry
squash 061be9ca5d98 www/nyxt: (WIP) Ready for testing

When you save and quit your editor, Git will complete the rebase, then show you the log mes-
sages in your editor, so that you can write a new log message for the new, single commit. Here
is an example commit message that we might want to use when sharing our work with others
for review.

www/nyxt: New port for the Nyxt browser

Nyxt is a keyboard-driven web browser designed for power users.
Inspired by Emacs and Vim, it has familiar key-bindings and is
infinitely extensible in Lisp.

WWW: https://nyxt.atlas.engineer/

Refer to the November 2020 Journal article for a deeper discussion on Writing Good FreeBSD
Commit Messages. Now git log --oneline will show a single commit in our nyxt branch.

7392483f6147 (HEAD -> nyxt) www/nyxt: New port for the Nyxt browser
9f77e9601564 (freebsd/main, freebsd/HEAD, main) net-im/toxic: upgrade to v0.11.2

11 of 16

https://freebsdfoundation.org/wp-content/uploads/2020/11/Writing-Commit-Messages.pdf
https://freebsdfoundation.org/wp-content/uploads/2020/11/Writing-Commit-Messages.pdf

23FreeBSD Journal • January/February 2022

Another way we will want to rewrite the history is by rebasing our work in the nyxt branch on
top of an up-to-date main branch. First update the main branch.

git checkout main
git pull

Then switch back to the nyxt branch and tell Git to do the rebase.

git checkout nyxt
git rebase main

If all goes well, git log will show your commits in the nyxt branch descending from the lat-
est commits from the main branch. If conflicting changes were made in freebsd/main and
your nyxt branch, Git will inform you which files have conflicts and give you the opportunity to
manually resolve them.

~/freebsd/ports [nyxt|✔] % git rebase main
Auto-merging www/Makefile
CONFLICT (content): Merge conflict in www/Makefile
error: could not apply 531d9081dfb1... Add new entry for nyxt browser
hint: Resolve all conflicts manually, mark them as resolved with
hint: “git add/rm <conflicted_files>”, then run “git rebase --continue”.
hint: You can instead skip this commit: run “git rebase --skip”.
hint: To abort and get back to the state before “git rebase”, run “git rebase
--abort”.
Could not apply 531d9081dfb1... Add new entry for nyxt browser

We can see the conflict is in www/Makefile and Git tells us what options we have to resolve
the conflict manually. Here is an example of what we might see in www/Makefile

<<<<<<< HEAD
SUBDIR += nyan
||||||| parent of 531d9081dfb1 (Add new entry for nyxt browser)
=======
SUBDIR += nyxt
>>>>>>> 531d9081dfb1 (Add new entry for nyxt browser)

In this case, it is straightforward to manually fix the conflict. We want to add our entry for nyxt
below the new entry for nyan. After editing the file so it looks like

SUBDIR += nyan
SUBDIR += nyxt

tell Git that we are ready to continue with

12 of 16

24FreeBSD Journal • January/February 2022

git add www/Makefile
git rebase --continue

Rebasing your feature branch onto an updated main branch is something you will do often
enough that you may want to use a convenience script to do it in one step. Here is a simple ex-
ample. Run rum from the feature branch to do the rebase in one step.

#!/bin/sh

rum, r_ebase onto u_pdated m_ain

Usage: rum

globals expected in ${HOME}/.ports.conf with sample values
No leading / on directory names means they are relative to $HOME
portsd=/usr/home/ashish/ports # ports directory

. “$HOME/.ports.conf”

usage () {
 cat <<EOF 1>&2
Usage: ${0##*/}
EOF
}
main
[$# != 0] && { usage; exit 1; }

[-n “${portsd##/*}”] && portsd=”${HOME}/$portsd”

current branch
cb=”$(git -C “$portsd” branch --show-current)”

if [-z “$cb”]; then
 printf “Could not determine the current branch.\\”
 exit 1
elif [“$cb” = “main”]; then
 printf “The main branch is checked out.\\n”
 exit 1
fi

git -C “$portsd” checkout main && \
 pull && \
 git -C “$portsd” checkout “$cb” && \
 git rebase main

13 of 16

25FreeBSD Journal • January/February 2022

Submitting Work for Review
Now we are ready to submit our work for review. FreeBSD currently has two ways to do

this. Bugzilla is used for submitting bugs and Phabricator is used for reviewing source code
changes. Both accept patches, but Phabricator has helpful features that are missing from Bug-
zilla, such as allowing reviewers to add comments specific to one or more lines of the patch. To
cover both methods, let’s create a review in Phabricator, then a new bug in Bugzilla that points
to the Phabricator review.

FreeBSD Phabricator Reviews
To begin using FreeBSD’s Phabricator instance for code review at https://reviews.freebsd.org,

you must first create an account, then install the arcanist command line tool.

pkg install arcanist-php80

Set up ~/.arcrc with the required certificates by running

arc install-certificate https://reviews.freebsd.org

and follow the instructions. Next, configure Arcanist to use https://reviews.freebsd.org as the
default URI.

arc set-config default https://reviews.freebsd.org/

To submit your review, from the nyxt branch run

arc diff --create main

This will create a new review with all the commits in the nyxt branch. In this example, we
squashed our commits into a single commit, so the revision will be created with that single
commit. When your editor opens, you will have the opportunity to edit the fields that are part
of the revision. The top line will be the subject of your commit log, www/nyxt: New port for
the Nyxt browser and the summary will contain the rest of the commit log. Under test plan,
you can list what you did to test the port. For example, if you did poudriere testport for
each of the supported versions on the tier 1 architectures, you could write

poudriere testport 12/13 amd64/aarch64

You must also add at least one reviewer. If you have one or more ports committers that you
have been working with, you can add their usernames here. For example

Reviewers: ashish rene

You can also specify group reviewers, which are of the form #group_name such as #ports_
committers. The Subscribers: field, like Reviewers: takes a list of users, but these users do not
reject or approve your work. When reviewers request changes, you can update the revision with

14 of 16

https://bugs.freebsd.org/
https://reviews.freebsd.org/
https://reviews.freebsd.org/
https://reviews.freebsd.org/auth/register/
https://reviews.freebsd.org

26FreeBSD Journal • January/February 2022

arc diff --update <revision>

where <revision> is the revision ID and takes the form DXXXXX. It can be found in the email
sent to your address when you created the revision. For example, if your revision is found at
https://reviews.freebsd.org/D33314, then use D33314 as <revision>.

Submitting Bugzilla Bug Reports
To create a new Bugzilla bug, point your browser to https://bugs.freebsd.org and click the

New link at the top of the page. If you are not logged in to the FreeBSD Bugzilla instance, you
will be prompted to do so. If you do not have a FreeBSD Bugzilla account, you can use the link
on the login page to create a new one.

From here, you choose the Ports & Packages link since we are creating a new port and
choose Individual Port(s) for the Component. For ports-specific bugs, the bug’s subject
line can be the commit subject prefixed with [NEW PORT], i.e., [NEW PORT] www/nyxt: New
port for the Nyxt browser. If the port isn’t new, the category/port prefix will automati-
cally assign the bug to the maintainer of the port. In the description you can add the rest of the
commit message and any other information helpful for others reading the bug. If you created a
Phabricator review, add it to See also.

When your new port is accepted and pushed to git.freebsd.org/ports.git, your new
job as the maintainer of the port begins. For an outline of the responsibilities of port maintain-
ers, refer to the The challenge for port maintainers article. To keep up-to-date with upstream,
portscout is a helpful service to alert you when there is a new release, so you can submit a
port update. If upstream uses GitHub, you can also be alerted to new releases by following the
Watch and Custom links, then check Releases on the project’s page. When it’s time to update
your port and the changes are simple (e.g., only DISTVERSION/distinfo changes), submitting a
Phabricator review may not be necessary. From a Git feature branch, you can create a patch us-
ing git format-patch main and attach it to a new Bugzilla bug. With Git, we now have more
flexibility when crediting contributors for their work. When you submit a patch this way and a
committer pushes it to git.freebsd.org/ports.git, git log will give you credit for your work.
Even if you submit a traditional diff, committers have the option to set you as the author.

Opinionated Conclusions
Change can be hard. Many FreeBSD developers and contributors who dedicated signifi-

cant time to becoming productive using Subversion were reluctant to change to a new version
control system, especially one so fundamentally different. We lost some practical features like
simple, monotonically increasing commit revisions and deterministic history retention when di-
rectories and files are moved within the repository. However, after three quarters of year, most
indications suggest developers and the wider community are pleased and productive with the
change. It is difficult to isolate the cause of certain outcomes, but the number of commits to
the ports tree from the conversion date until the time of writing, 2021-04-06 to 2021-12-31
is 29,238. This is 1,748 more than the number for the same time last year. Let’s hope this is a
continuing trend in contributions to the ports tree.

JOE MINGRONE is a FreeBSD ports developer and works for the FreeBSD Foundation. He lives
with his wife and two cats in Dartmouth, Nova Scotia, Canada.

15 of 16

https://reviews.freebsd.org/D33314
https://bugs.freebsd.org/
https://docs.freebsd.org/en/articles/contributing/#maintain-port
https://portscout.freebsd.org/
http://git.freebsd.org/ports.git

