
5FreeBSD Journal • March/April 2022

R
ecently, ARM64 became a Tier I platform for FreeBSD. Since Semihalf has a long histo-
ry of supporting FreeBSD on anything ARM, it was a logical step to use it in production.
The test bed was unusual, however, since it was not yet another Web server or NFS stor-
age array (which we have plenty of already), but a full-fledged Data Science lab.

The task at hand was to run a large-scale simulation experiment on the Marvell ThunderX2
ARM server. The simulation experiment resulted in the scientific publication and a chapter in
the PhD thesis. The workload spans hundreds of CPU-hours for custom simulation software
alongside the standard Open Source scientific toolkit, such as SciPy, Pandas, and Jupyter. The
main bottleneck of the simulation system was RAM, while putting equal pressure on the disk
I/O and data integrity. The software suite was originally developed for Linux and had to be
ported to FreeBSD (by complying with POSIX).

ThunderX2 used in the experiment is a dual-socket 56-core ARM64 platform. The single
CPU die has 28 cores in eight core complexes joined by the ring interconnect with shared L3
cache with cross-section bandwidth of more than 6TB/s. Each core may have up to 4 SMT
threads totalling to 224 threads in the system. The 8-channel DDR4 interface for each die pro-
vides over 200GB/s of memory bandwidth for the whole system. The CPU dies are connected
through CCPIv2 interconnect providing 600 Gb/s bandwidth. Looking at the specs, it seems to
be the perfect target for memory-bound workloads.

Fig1. The architecture of ThunderX2 system.

BY MACIEJ CZEKAJ

1 of 4

Data Science on
FreeBSD/ARM64

https://lists.freebsd.org/pipermail/freebsd-announce/2021-April/002030.html
https://www.marvell.com/content/dam/marvell/ en/public-collateral/server-processors/marvell-server-processors-thunderx-cn99xx-
product-brief-2019.pdf

https://www.mdpi.com/2079-9292/10/16/2015/htm

6FreeBSD Journal • March/April 2022

Originally used in the GNU Linux/x86 desktop environment, the simulation system had to be
adapted to a parallel environment, possibly without too much programming effort. The cen-
tral part of the system is a custom simulator software written in C++. The simulator accepts a
recorded packet trace (PCAP stream) and produces a network flow database. The stream may
come from a file or from another program (the mixer) which combines many packet streams
together. The flow database is a custom binary format, which resembles the memory organiza-
tion of a C table of structures. This format is both easy to serialize in C/C++ (by frwrite()) as
well as easy to parse by Numpy (by fromfile()).

Fig2. The custom Data-Scientific pipeline executed on FreeBSD.

The next phase is controlled by statistical software in Jupyter Notebook. Each experiment
produces millions of records occupying gigabytes of RAM, which mandates the use of an
in-memory database for analytics in the form of Pandas DataFrame objects. The whole pipeline
is described as a set of GNU Make job definitions.

The porting process from GNU/Linux to FreeBSD-12.2 was relatively simple. The C++ code
base used mostly I/O system calls, which are part of the POSIX standard. Porting from GCC to
Clang revealed a few issues about the code base itself, lending credibility to the common wis-
dom that using more than one compiler improves the code quality. The only functional issue
was the usage of a hash function from the stan-
dard C++ library. The exact algorithm is implemen-
tation-dependent, so in order to keep the results re-
producible, the hashing function source code must
be provided. There were few performance issues
with the C++ iostream library on FreeBSD. Granted,
using text-based I/O was a design mistake in the first
place, so the porting effort only amplified that inher-
ent weakness. In summary, the porting of the C++
code proved to be the least concern and making it a
multi-platform software improved the overall quality of the simulator.

Surprisingly, using the popular Python frameworks posed a bigger challenge than porting
the C++ code. Popular scientific packages have many dependencies and usually are kept out-
side of a standard OS-specific Python stack. The essential challenge is to match the right ver-
sion of Python, Numpy, SciPy, Pandas, Scikit-learn, and dozens of dependencies. In GNU/Linux
the most popular way to resolve this conundrum is to use the binary Anaconda distribution.
To my disappointment, the Anaconda dev team does not express any interest in supporting
FreeBSD. The only alternative (apart from compiling everything from scratch) was to use Python
Virtualenv. The fun started right away, when some of the packages were expecting GCC and

2 of 4

The porting process from

GNU/Linux to FreeBSD-12.2

was relatively simple.

7FreeBSD Journal • March/April 2022

others assumed Linux-specific include paths. After the painful process, all the essential packages
were compiled. This should not be a surprise that Python packages heavily rely on third-party
C or C++ libraries. Many Python packages are only language bindings to libraries written in C.
Each time the package is installed, the third-party dependencies must be recompiled. It is worth
keeping in mind that the whole Python stack is not totally independent of the base system.
Thus, upgrading the FreeBSD poses a risk of repeating the whole process.

If the deployment of the Python stack was so cumbersome, was it worth it? Ultimately —
yes — due to parallel computing. By default, the computation on DataFrame objects is sin-
gle-threaded. However, the Pandarallel package provides a seamless parallelization through
multiprocessing. Though not perfect, as it mandates copying the data, the speedup is still sig-
nificant for CPU-intensive computations.

Fig 3.The parallelization scheme supervsed by Make.

The simulation system was designed to be single-threaded. The packet processing job must
maintain an order of packets, so the central algorithm must remain sequential. The only viable
means to scale the workload to many CPU cores was to exploit the coarse-grained parallelism
in the workflow itself. The workflow definition contains more than 500 independent jobs. Each
job lasts from several minutes to an hour, with the memory consumption from 10 to 30 GB
(just for the data structures, so that was essentially an un-swappable resident set).

Luckily, the Make utility is capable of supervis-
ing a fixed number parallel jobs though the ubiqui-
tous “-j” option. The challenging part was to match
the varying memory requirements of the jobs with
the number of processes. To my knowledge, there
are no build systems that try to limit the number of
jobs based on the memory pressure. They all consid-
er only CPU load. Thanks to the infamous FeeBSD
OOM killer and the decades-old UNIX wisdom ac-
cumulated in the Make utility, that turned out to
be easier than expected. Each time when the number of jobs exceeded the RAM capacity, the
OOM killer would pick the most memory-hungry process. This resulted in wasted CPU time,
but kept the whole system stable and responsive. Also, the artifacts produced by the killed pro-
cess were removed by Make, so data integrity was not compromised. This behavior is contin-
gent on the correct job definition, since only explicitly defined Make targets are deleted.

The final version of the system was running continuously for over a week with intermittent
supervision from the operator. The high demand for disk I/O bandwidth was met by the use
of SSD drives backed by the ZFS filesystem. The overall stability of the platform was proven be-
yond any doubts.

If the deployment of

the Python stack was

so cumbersome,

was it worth it?

3 of 4

https://pypi.org/project/pandarallel/

8FreeBSD Journal • March/April 2022

The final conclusions for role of the FreeBSD/ARM64 as a scientific platform can be drawn in
few points:

1.	The platform provides excellent stability. The low overhead of the system and minimalist
distribution leaves plenty of room for CPU-intensive or memory-intensive tasks.

2.	The I/O subsystem can keep up with the most demanding workloads as long as the back-
ing storage is solid state.

3.	Porting the software from x86_64 to ARM64 architecture is mostly as easy as recom-
piling, provided that the developer follows the best practices of creating portable code.
In case of porting from Linux from the same architecture, Linuxulator provides Linux ABI
for native binaries.

4.	Complex software stacks which are not supported by the system package manager can
pose some challenges, if there are no alternative package managers. It is best to use
shortcuts, with pre-built environments based on jails. As usual with the Open Source com-
munity, the software needs a critical mass of users to draw the attention of developers.

This yet another FreeBSD success story is a testimony to the effort of many developers
which solidified the ARM64 port to the point where using the system is as ubiquitous as any
x86 machine.

MACIEJ CZEKAJ is a lead s/w engineer at Semihalf, specializing in high-speed networking ap-
plications and drivers. He is a contributor to the DPDK project where he claims the authorship
of one of the first ARM64 Ethernet device drivers (VNIC on ThunderX ARM64 server). He re-
ceived his Comp. Sci. PhD program at AGH University (Kraków, Poland) on high-speed network
acceleration.

4 of 4

all the storage; we use ZFS to replicate the data between cluster nodes; we use
compression and snapshots. And we heavily use Capsicum to make it all secure.

We want to be sure that even if someone breaks into a single session, he can-
not access other sessions. He cannot actually access anything, because if he
breaks in before authentication, he won't be granted access to connect to the
server. Only after successful authentication will we provide a connection to the
destination server.

And Capsicum makes it really clean and very efficient actually.
Al lan: You don't have to enumerate all the things you can't do. You're saying
you're only allowed to do these things?

• Pawel: Yes. This is capability ideology. You only grant the exact rights or access
to resources that the process requires. Which is not UNIX ideology because, of
course, if you are running a UNIX program, it has access to everything.
Al lan: Was there anything else you wanted to talk about?

• Pawel: Not really. •

Sept/Oct 2019 23

FreeBSD is internationally recognized as an innovative
leader in providing a high-performance, secure, and stable
operating system.
Not only is FreeBSD easy to install, but it runs a huge number

full source code.

The FreeBSD Community is proudly supported by

T

Help Create the Future.
Join the FreeBSD Project!

The FreeBSD Project is looking for

Find out more by

Checking out our website

Downloading the Software

for people like you to help continue
developing this robust operating system.
Join us!

Already involved?

Don�t forget to check out the latest
grant opportunities at
freebsdfoundation.org

mailto:mjc@semihalf.com
https://www.dpdk.org/

