
37FreeBSD Journal • May/June 2022

F
or a lot of us, the time a FreeBSD system takes to start up is mostly decided by how
long the machine takes to go from power through the system firmware and into load-
er. On server hardware, the first stages to initialize the system and get to loader can take
minutes. In this environment, it is hard to worry much about a couple of seconds in the

FreeBSD boot process.
In a cloud environment, where you are charged by the second, time spent in the boot pro-

cess is time wasted, it is time you are billed for from which you don’t get any value back. Faster
boot times mean that your platform can be used in dynamically scaled environments more eas-
ily. If your system takes minutes to boot versus tens or single digit seconds to boot, you must
guess more about future load, rather than being able to spin up and down hosts as demand
requires them.

Cloud environments are where the first set of
tools to improve the performance of FreeBSD boot
were added. In 2018, Colin Percival presented “Profil-
ing the FreeBSD kernel boot: From hammer_time to
start_init” at AsiaBSDCon. Colin’s work added a
timestamped event log—called TSLOG—to the ker-
nel, which can be used to track the time the kernel
spends in each subsystem during boot [https://pa-
pers.freebsd.org/2018/bsdcan/percival-profiling_the_
freebsd_kernel_boot/].

The TSLOG framework traces events that are com-
piled into kernels with the TSLOG option. Events are
implemented with macros which compile to nothing
when the option isn’t present. TSLOG events go into
a buffer and accumulate until the buffer is full and
then they are silently dropped, this allows TSLOG to capture early events in preference to later
ones in the system.

With TSLOG, the boot time can be tracked and analyzed, to analyze the output log from
the system. Colin uses timeshare plots called FlameCharts that work well for this, FlameCharts
are like FlameGraphs [https://www.brendangregg.com/flamegraphs.html], but are sorted in
chronological order rather than alphabetically.

In each flame graph, the horizontal time represents how much of the boot process is spent
in each area, broken down vertically by sub system.

BY TOM JONES AND MITCHELL HORNE

FreeBSD
Boot Performance

1 of 4

On server hardware,

the first stages

to initialize the system

and get to loader can

take minutes.

https://papers.freebsd.org/2018/bsdcan/percival-profiling_the_freebsd_kernel_boot/
https://papers.freebsd.org/2018/bsdcan/percival-profiling_the_freebsd_kernel_boot/
https://papers.freebsd.org/2018/bsdcan/percival-profiling_the_freebsd_kernel_boot/
https://www.brendangregg.com/flamegraphs.html

38FreeBSD Journal • May/June 2022

11.1-RELEASE boot
28208 ms

Reset Zoom Search

249 /etc/rc.d/..

kernel
mi_startupinteract

DEVICE_ATTACH nexus

DELAY

DEVICE_ATTACH ..

SYSINI..

1 /sbin/init

DEVICE_ATTACH ..

bd_io
read DE.. SYSINIT configure2

363 s..

ha..

DELAY

366 s..
8..SYSI..

DEVIC.._..

loader

255 /usr/local..DEVICE_ATTACH acpi
DELAY

256 /sbin/dhc.._vp..
bd_io

D..
bd_edd..

bd_edd_io

155 /etc/rc.d/netif
22 /etc/rc

DE..
DEVICE_P..

bd_open
open

DELAY

DEVICE_A..

14.0-CURRENT boot
8090 ms

Reset Zoom Search

lo..

i..
404 s..

k..

298 /sbin/dhc..

16 /etc/rci..
1 /sbin/init

562 ..
290 /etc/rc.d..

199 /etc/rc.d/netif
569 ..

Figures 1 and 2 show how Colin and others have used TSLOG to find slow periods in the boot
process. Fgure 1 shows approximately where we started in 2017 and Figure 2 shows the time
they have managed to trim out of the boot process in last 5 years, with most of the of the hard
work happening recently.

BootTrace
TSLOG is a great way to discover where the kernel was spending time during start up. In

early 2022, Mitchell Horne began upstreaming a framework from NetApp called BootTrace.
BootTrace allows us to perform the same sort of tracing as TSLOG, but with a couple of ma-
jor enhancements that give us even more coverage. BootTrace provides the enhanced ability to
trace userspace processes, allowing us to cover the rc subsystem, and we can trace the shut-
down process.

Shutdown process is difficult to trace with TSLOG because when it is done, the host is gone.
In some ways, shutdown (or reboot) is just as important as startup, time spent putting the sys-
tem to bed helps with system consistency, but the host really isn’t doing work during shut-
down. BootTrace works around this limitation and gives us a great total view into how the sys-
tem starts and stops.

How to Contribute
We now have a wealth of tooling to look at the performance of the FreeBSD boot and shut-

down process, but developers can only look at the systems and application workloads to which
they have access.

Colin is focused on running FreeBSD in Amazon Web Services. There are many, many more
cloud providers around and each is likely to have areas that can be tuned to get the fast boot
and shutdown times out of a FreeBSD system.

The best way to contribute to improving FreeBSD performance in these areas is to run the
tooling we have and share the resulting FlameCharts. Colin is eager to have boot FlameCharts
for more and non-cloud systems. You can use the FlameCharts to figure out where the ‘hot
spots’ (or maybe they are ‘cold spots’) are in the boot and shutdown processes. Once these
have been identified to the FreeBSD project, developers can figure out how to improve perfor-
mance in each case.

TSLOG lead to large improvements in the FreeBSD boot process. FreeBSD boot has gone
from ~30 seconds in 2017 on 11.1-RELEASE when Colin started and is down to ~9 seconds in

2 of 4

FreeBSD Boot Performance

FreeBSD Boot Performance

39FreeBSD Journal • May/June 2022

March 2022 on 14-CURRENT. Some of these gains are in the form of second-sized improve-
ments, but plenty of others came as 100ms reductions in the time subsystems spent initializing.

There is still a way to go to get FreeBSD down to clear Linux, which can boot in ~1 second
on EC2. The way to get there is by testing with the boot profiling tools we now have and high-
lighting areas for improvement to developers in the project.

Tracing Boot Time with TSLOG
TSLOG is reasonably straightforward to run if you have experience building and using your

own FreeBSD kernels. You need to build a custom kernel with an ‘options TSLOG’ and then run
the script Colin has provided in the freebsd-boot-profiling repository [https://docs.freebsd.org/
en/books/handbook/kernelconfig/].

The latest version of these steps should be on the Boot Time FreeBSD wiki page [https://wiki.
freebsd.org/BootTime]. With the FlameChart from Colin’s script in hand, you can now follow
the much more difficult process of identifying areas in the boot process that take longer than
they should.

As of writing, rtsold takes up a large portion of the userspace boot time on my systems.
This is an important daemon for doing IPv6 autoconfiguration, but it might also be a good
starting point for improving your systems boot performance if you use DHCP6 for your net-
work configuration.

Tracing Boot and Shutdown Time with BootTrace
With FreeBSD 14-CURRENT the new BootTrace framework from NetApp is present in the

FreeBSD kernel. BootTrace is built into the kernel but is disabled by default.
BootTrace allows the tracing of boot, run time and shutdown time events which it stores in

three separate logs. On a FreeBSD 14-CURRENT system from March 2022 you can enable trac-
ing by setting the kern.boottrace.enabled sysctl to 1 in /boot/loader.conf.

Once enabled, the system will output the boot and run time logs via the kern.bootrace.
log sysctl.

 CPU	 msecs	 delta process	 event	 PID	 CPUtime	IBlks	OBlks
	 0	 177873	 0 kernel	 sysinit 0x2100001	 0	 0.00	 0	 0
	 0	 177873	 0 kernel	 sysinit 0x2110000	 0	 0.00	 0	 0
	 0	 177873	 0 kernel	 sysinit 0x2140000	 0	 0.00	 0	 0
	 0	 177873	 0 kernel	 sysinit 0x2160000	 0	 0.00	 0	 0
	 15	 182874	 0 kernel	 sysinit 0xf100000	 0	 0.00	 0	 0

...

	 15	 182874	 0 kernel	 sysinit 0xfffffff	 0	 0.00	 0	 0
	 15	 182875	 1 swapper	 mi_startup done	 0	 0.00	 0	 0
	 9	 182880	 5 init	 init(8) starting...	 1	 0.00	 0	 0
	 9	 182880	 0 init	 /etc/rc starting...	 1	 0.00	 0	 0
	 14	 202622	 19742 init	 /etc/rc finished	 1	 0.61	 909	 23
	Total measured time: 24749 msecs

CPU	 msecs	 delta process	 event	 PID	 CPUtime	IBlks	OBlks
	 14	 202622	 0 init	 multi-user start	 1	 0.61	 909	 23
	Total measured time: 0 msecs

3 of 4

https://docs.freebsd.org/en/books/handbook/kernelconfig/
https://docs.freebsd.org/en/books/handbook/kernelconfig/
https://wiki.freebsd.org/BootTime
https://wiki.freebsd.org/BootTime

40FreeBSD Journal • May/June 2022

Shutdown tracing is possible by setting the kern.bootrace.shutdown_trace sysctl to 1
and shutting down the system. Shutdown tracing is quite a difficult problem. Until boot perfor-
mance tracing at the end of the shutdown process, you don’t have a system from which to pull
the information. To work around this, BootTrace logs the shutdown log to the systems console. To
recover the log, you will need to have a console that records message sent to it (such as serial).

The log from my test system looks like this:

CPU	 msecs	 delta process	 event	 PID	CPUtime	IBlks	OBlks
	11	 8089055	 0 init	 single-user from multi-user	 1	 0.57	 914	 45
	11	 8128611	 39556 init	 halt & poweroff from multi-user	 1	 1.38	 1274	 142
	15	 8129849	 1238 init	 kernel shutdown (clean) started	 1	 1.69	 1274	 248
	0	 8129849	 0 init	 system halting... 	 1	 1.69	 1274	 248
	0	 8129849	 0 init	 system powering off... 	 1	 1.69	 1274	 248
	0	 8132523	 2674 init	 shutdown pre sync complete 	 1	 1.69	 1274	 248
	0	 8132523	 0 init	 bufshutdown begin 	 1	 1.69	 1274	 248
	0	 8132524	 1 init	 shutdown sync complete 	 1	 1.69	 1274	 248
	0	 8132615	 91 init	 shutdown unmounted all filesystems	 1	 1.69	 1274	 248
	0	 8132715	 100 init	 bufshutdown end 	 1	 1.69	 1274	 248
	0	 8132715	 0 init	 shutdown post sync complete 	 1	 1.69	 1274	 248
	0	 8132715	 0 init	 shutdown final begin 	 1	 1.69	 1274	 248

BootTrace offers three write only sysctls, boottrace, runtrace and shuttrace. When
written to an event will be logged as ‘${procname}: name’. These sysctls make it easy to
add BootTrace logging to your own applications.

Dealing with the Results You Get
Once you have identified an area in the boot process in your environment, you then need to

determine if it can be improved and, if possible, suggest how. From TSLOG results, you should
look for items in the FlameChart that take up a substantial portion of the boot time first and
dig down into those in the FlameChart svg.

More subsystems and userspace components could benefit from BootTrace events. Adding
these into your workloads’ start up and shutdown scripts can provide insight into where issues
are and you might uncover issues that impact FreeBSD users generally.

Some subsystems build in long delays to allow other network hosts to synchronize. These
sorts of delays might be prime candidates for trimming down the boot process.

FreeBSD developers welcome good bug reports via the bug tracker, if you can provide hints
or patches that will fix boot performance issues, then all the better.

The FreeBSD boot process is never going to be finished. Over time, as services and hardware
change, it is going to vary. A lot of the most significant boot performance benefits came from
reducing interactions with emulated legacy hardware. On systems with many cores, loads of
time was spent writing characters to the emulated VGA console. Over time, hardware will age
out of use and faster or slower equipment will follow. With your help we can keep FreeBSD
competitive in the cloud and stop wasting time starting up machines.

TOM JONES wants FreeBSD-based projects to get the attention they deserve. He lives in the
North East of Scotland and offers FreeBSD consulting.

4 of 4

FreeBSD Boot Performance

