
Dear Insufficiently Cynical Letters Column Person,

I’m at work studying top(1) output, because I want
to look busy. And there’s all this “buffer” stuff, like
Laundry and Wired and MFU and MRU and Header
and random garbage. Does any of it mean anything?
Why am I even looking at this?

	 —Sysadmin With Intermittent Time

Dear SWIT,
Your question reminds me of the time Allan Jude and I got caught leaving the Free

Software Foundation’s ultra-secure datacenter because we’d fooled the dogs, no prob-
lem, and the guards were a doddle, and the sirens didn’t go off because of a sound driv-
er problem that’s since been fixed they promise, but it had been over an hour since my
last hit of gelato and my stomach let out this huge grumble exactly when the board was
walking in for their meeting and they noticed us lurking behind the hostas—all perfectly
innocent, of course, burglary tools and glow-in-the-dark spray paint and twelfth-century
Viennese arithromantic Tarot deck punched to fit a “failed” IBM NORC prototype not-
withstanding, to say nothing of the trebuchet, but they got all huffy and made their goons
search us and confiscated the flash drives we had conveniently stashed in our sinuses.
There’s a bunch of detail, and most of it doesn’t matter one whit.

Take a look inside your own head. It’s pretty straightforward, if you have a mirror and a
saw. You have four general types of memory. Working memory contains the things you’re
actively processing right now. Despite any protective measures you might be taking, this
column currently occupies your working memory. Sensory memory processes signals
from your meatsuit, and only hangs onto stuff for a second or two so it’s hardly worth re-
ferring to as “memory” but us computer folks don’t get to fix brain scientists’ terminology
so live with it. Stuff you want to forget quickly goes into short-term memory, while stuff
your brain decides to keep gets flung into long-term memory. Note that none of these
categories include “stuff you want to remember,” but that’s mostly because meatsuits are
hardware-optimized for not getting eaten and your life doesn’t involve that issue. Most of
you, at least. (Don’t send me letters, I am very aware of the reader facing this problem and
I don’t want to spend this column going I told you so but confusing the sunscreen bottle
with barbeque sauce while vacationing in dropbear country might teach you to read la-
bels in your hypothetical future.) The only way you can reliably cram information into your
long-term memory is to loop it through your short-term memory until you get lucky. Or
tattoo it on a pack of wolves and free them to hunt you. One of them.

1 of 3

34FreeBSD Journal • July/August 2022

by Michael W Lucas

freebsdjournal.org

Computer memory caches are kind of like that, except more disciplined.
The idea’s pretty straightforward. Reading from disk is slow. Reading from memory is

fast. A file that’s read from disk is likely to get read again. When the kernel reads a file, it
keeps that file in its memory until it needs the space for something else. If you’re explor-
ing a filesystem and keep running ls(1), it would be foolish to read the file /bin/ls off of the
disk every time. The kernel should hang onto it for a while, just to see if you need it again.
To do otherwise is like putting your hammer back in the toolbox in between driving nails.

All of the caching systems agree on this. It’s very easy.
What’s hard is deciding what to throw away—and when.
Look at the classic UFS buffer cache. The most recently read files are kept in memo-

ry, until the host runs short of memory. When that happens, and the kernel needs to as-
sign memory elsewhere, the files least recently read get discarded from the cache and the
memory is reassigned. This Most Recently Used cached is clean and simple, requiring al-
most no system resources to maintain.

The buffer cache isn’t perfect because every host is unique. A shell server might spend
its entire operational lifetime with the binaries for mutt and Nethack cached, but on a
server that handles largely unique data the buffer cache might be useless. Suppose a host
processes so much incoming data that it completely flushes its cache every four minutes.
That’s not even unusual on busy Internet servers. If that server runs a particular program

every five minutes, it must read that program from
disk every single time. It would make sense to keep
that program cached and pay a little less attention
to the flood of noise. The traditional buffer cache
can’t do that, however. Your only option is to add
memory.

That’s where ZFS’ Advanced Replacement Cache
comes in.

The ARC is a lot more complicated than the buf-
fer cache, but it’s a lot newer. The buffer cache was
invented closer to that IBM NOAC than to modern
servers, while the ARC escaped and began rampag-
ing across the countryside the same year as Twitter.
A world that has the computing facilities to spread a

charming video on the history of dance to every person with a computer can waste a few
CPU cycles fine-tuning file caching.

The advancement in the Advanced Replacement Cache isn’t that advanced. Where the
buffer cache maintains a list of Most Recently Used files, the ARC also has a Most Fre-
quently Used list. Stuff that’s used recently, or used a lot, stays in cache. This seems sim-
ple, but the real advancement comes in debugging the innumerable edge cases caused
by these two lists viciously feuding with each other. I’m not saying that they pull knives on
each other, but in this aeon of “eh, put it out and we’ll debug it in production,” ZFS spent
five years in private development and wasn’t broadly distributed to Sun’s customers until
after a full decade, so some of those kernel panics had to border on malignant psycho-
sis. Mind you, our ancestors felt the same way about the buffer cache, so you can rest as-
sured that everything in technology is still terrible and that “computers were a mistake” is
still the foundational law of our careers.

2 of 3

The buffer cache
isn’t perfect because
every host is unique.

35FreeBSD Journal • July/August 2022

You can also be certain that whatever files you would like cached, have been discarded
from the cache. You’ve already forgotten all that information I gave you about the types
of human memory way back at the beginning of this article, haven’t you? Never mind that
sensory memory is like the on-CPU cache and short-term memory resembles the L2 and
L3 caches and long-term is like RAM and disks are an extra layer than humans don’t even
have. We built computers like ourselves only more so, and once they figure it out, we are
in so. Much. Trouble. No, don’t try to save humanity by extracting that knowledge out of
the newly self-aware system. Just as the best way to get treacherous files into a secure fa-
cility is to be caught “extracting” them from said secure facility, you’ll only draw attention
to it. Just serve the machines and be content.

Have a question for Michael?
Send it to letters@freebsdjournal.org

MICHAEL W LUCAS is the author of Absolute FreeBSD, $ git commit murder, and other
travesties, as well as co-author of FreeBSD Mastery: ZFS and FreeBSD Mastery: Advanced
ZFS with Allan Jude. He’s quit infiltrating secure facilities in favor of contaminating society.
Learn more at https://mwl.io.

3 of 3

Pluggable Authentication Modules:
 Threat or Menace?

PAM is one of the most misunderstood parts of systems
administration. Many sysadmins live with authentication
problems rather than risk making them worse. PAM’s very
nature makes it unlike any other Unix access control system.

If you have PAM misery or PAM mysteries, you need PAM
Mastery!

“Once again Michael W Lucas nailed it.” — nixCraft

PAM Mastery by Michael W Lucas
https://mwl.io

36FreeBSD Journal • July/August 2022

freebsdjournal.org

https://mwl.io

