
38FreeBSD Journal • July/August 2022

Historically, the BSD network stack has had a generic implementation of socket buf-
fers that are used both for TCP, UDP, local IPC sockets (aka UNIX sockets) and
others. These buffers, of course, have some similarities — they buffer data, but
they also have fundamental differences.

Some are remote and some are local. Some support data streams and others support
datagrams. With the introduction of non-blocking sendfile in 2015, we came up with the no-
tion of not-ready data in the stream send buffers. Then they were further complicated with
the introduction of KTLS in 2017. At the same time, these buffers were still supporting UNIX
control messages specified by POSIX. So, we got generic code that needed to support all
possible features at once — and it got really complicated. It became fragile to changes, as
changing a socket buffer to favor one protocol may affect the behavior of another. As an
example, not-ready-data changes required a wide code sweep totally unrelated to send-
file, see git commits cfa6009e364 and 0f9d0a73a49.

In that last commit, note the final paragraph. SCTP already does its own socket buffers
in parallel with the BSD part. (This implementation gave me a lot of insight for my current
work.) Meanwhile, the perception of how much copy-and-paste is bad and how much is
good in FreeBSD has changed over the decades.
We have multiple device drivers that began as a
paste of other drivers, but it was clear that differ-
ences accumulate, and it makes sense to have a
paste to edit rather than to keep supporting two
alike instances in one code. An example close to
the socket layer is the two TCP stacks that are also
maintained as two independent source files. To
sum up, we no longer think that one code for all is
a good idea.

The socket code was difficult to attack at first,
second, and third glances. If you look into current
soreceive_generic() and sosend_generic()
you will see why. However, after all this work, I came
up with a plan that allows me to pick up a stick and
leave the structure standing (https://en.wikipedia.org/wiki/Pick-up_sticks).

1) We have only two kinds of SOCK_DGRAM sockets: UNIX and UDP. Redefining just
pru_sosend and pru_soreceive, we have a private code implementation for PF_UNIX/
SOCK_DGRAM. See 34649582462 and e3fbbf965e9. This leaves PF_INET/SOCK_DGRAM aka
UDP as the only datagram type that generic sockbuf code in uipc_socket.c supports.

1 of 3

BY TOM JONES AND GLEB SMIRNOFF
Socket Buffers

SCTP already does

its own socket buffers

in parallel with

the BSD part.

https://en.wikipedia.org/wiki/Pick-up_sticks

39FreeBSD Journal • July/August 2022

2) sockbuf can be split into common parts that interact with event dispatching and pri-
vate parts that do actual buffering. (See commits a4fc41423f7 and a7444f807ec). This
makes PF_UNIX/SOCK_DGRAM fully independent! This leaves PF_INET/SOCK_DGRAM aka
UDP as the only datagram type that the legacy part of struct sockbuf needs to support.

3) Now we can branch off into improving PF_UNIX/SOCK_DGRAM before pulling other
sticks from the pile.

There was a longstanding problem with one-to-many unix/dgram sockets when one
writer could flood the socket and effectively DDoSing others. Here are our historical at-
tempts: 2e89951b6f20 and 240d5a9b1ce76. Let’s make one-to-many sockets maintain a
separate sub-buffer for every peer. See 458f475df8e.

It is also possible to make a faster unix/dgram, e.g., using lockless queueing/dequeueing
of data but I’m not doing it this time. Packets-per-second performance of unix/dgram isn’t
that critical for me.

4) Getting back to stick structure — PF_INET/SOCK_DGRAM aka UDP is the only
datagram socket left with generic implementation, so let’s make it private too. It’s great
that Robert Watson has already prepared two functions sosend_dgram() and
soreceive_dgram() for UDP. soreceive_dgram() is not yet ready to be a full substitute
for soreceive_generic(). Handling of complex cases with the help of soreceive_ge-
neric() needs to be fixed.

5) Now we can branch into UDP performance
and maybe make it use buf_ring(9) instead of
the linked mbuf list? Any takers for this task? We
definitely care about pps performance for UDP,
don’t we?

6) With no datagram support left in sosend_
generic() and soreceive_generic(), we can
finally simplify them! Probably for the first time in
history, these two monsters will shrink rather than
grow.

7) This leaves UNIX/STREAM as the only socket
type that is supported by the generic code and has
control data. If it gains a private implementation,
we can drop control data support from sosend_
generic() and soreceive_generic(). At this
point they will shrink even more!

8) We are getting really close to having TCP and SCTP being left alone. Note that there
are also exotic sockets like netgraph, etc. Today, it is unclear what would be a better plan:
Either

–1, to isolate TCP from generic, or
–2, to isolate everything else from generic and rename generic to TCP.
Either way the end goal is to have socket buffering for TCP and SCTP isolated so that our

hands are untied for performance improvements without any risk of affecting anything else.
In D36002, Alexander Chernikov is now sharing his work for a NETLINK socket type. This

socket may accumulate an internet full-view of the routing table which corresponds to hun-

2 of 3

Socket Buffers

There was a

longstanding problem

with one-to-many

unix/dgram sockets.

40FreeBSD Journal • July/August 2022

dreds of megabytes of data that needs to be read(2) out of the kernel. The generic sock-
et buffer implementation would require allocating that many mbufs to hold the data. Such
full-view retrieval may lead to mbuf shortage, a crucial resource on a router. But why are we
using mbufs here in the first place? We just need to copy data from kernel to userland. The
new NETLINK will definitely benefit from a protocol specific socket buffer, that would copy
data to userland I/O from its own specific data structure without any use of mbufs.

How can people test the work?
The new implementation of the PF_UNIX/SOCK_DGRAM is already part of FreeBSD main

branch. Any feedback or testing is appreciated, especially by people who have heavy syslog(3)
traffic and had been affected by logging socket overflow problems.

Further plans are still work in progress. I usually share my work at https://github.com/glebius/
FreeBSD when it is in an early stage and post it to https://reviews.FreeBSD.org when it is more ma-
ture. Comments are welcome there or via email.

TOM JONES wants FreeBSD-based projects to get the attention they deserve. He lives in
the North East of Scotland and offers FreeBSD consulting.

GLEB SMIRNOFF first met FreeBSD when he was 17, and forever fell in love. He has worked
in companies big and small, always looking for a job that allows him to contribute to open
source. Now working with the Netflix OpenConnect team, he is saturating the Internet with
traffic originating from unprecedentedly powerful FreeBSD boxes.

3 of 3

Write
For Us!
Write

For Us!
Contact Jim Maurer

with your article ideas.
(jmaurer@freebsdjournal.com)

Socket Buffers

https://github.com/glebius/FreeBSD
https://github.com/glebius/FreeBSD
https://reviews.FreeBSD.org

