
5FreeBSD Journal • July/August 2022

When trying to understand code in production, developers log information to be
analyzed offline. This will usually require the decisions up front as to what and
when to log. The answers to these questions are usually based on a determination

of where things could go wrong or previous issues experience in the system. Knowing during
development exactly what information is needed during development is not always possible,
especially when trying to trace data for security reasons.

This is part of the problem faced by the Causal Adaptive Distributed, and Efficient Trac-
ing System (CADETS) research project1. The goal of the project was to use existing mecha-
nisms as well as develop new techniques to instru-
ment FreeBSD to maximize transparency into live
servers. This would give users better insight into
security concerns on their systems, as well as pro-
vide additional information for performance tun-
ing and debugging.

Loom was one of the tools developed as part of
this effort. In this article, we will look at the origi-
nal inspiration for building Loom. We will talk about
how Loom has been expanded beyond its original
purpose. Finally we will discuss what we are work-
ing on for the future of Loom.

Instrumenting for Security
When developers instrument their software, it is usually to track performance or trace

possible points of failure in a system. Similar methodology is often used when adding secu-
rity monitoring, often capturing only a small number of events such as login attempts with
minimal information. Much of this information is logged to different locations on a comput-
er and often is not correlated with other systems. The CADETS team found that this infor-
mation in the kernel could be obtained easily with the use of DTrace, the tracing framework
included as part of the FreeBSD base system. FreeBSD provides many DTrace providers to
allow access to information on kernel components such as system calls, function calls and
network buffers.

1 of 5

BY BRIAN KIDNEY

Building the
Loom Framework
on FreeBSD

In this article, we will look

at the original inspiration

for building Loom.

6FreeBSD Journal • July/August 2022

However, extracting additional information from userland processes DTrace requires
more work. The issues with tracing programs running in userland is the information captured
often lacks context and flexibility. For example, it is easy to write a DTrace script to log all calls
to a specific function in a library, but the script has to be applied each process that will use
that library. We needed a way to be able to instrument the library itself so that the logging
occurs for any program using the library without having to target each program explicitly in
the script. The mechanism needed also to provide provide context for each time the library
function was called, including function name, arguments and executable calling the function.

DTrace provides a mechanism to add tracing probes directly into programs and librar-
ies via Userland Statically Defined Tracing (USDT). The process for creating these probes
requires the developer to write and compile custom code for each probe, include it in the
original source and then use a DTrace specific tool to modify the programs binary object
files to insert calls to the probes. Unfortunately, this process requires changes to the build
process to include an additional tool that modifies your object files directly. Each time the
probe code is changed it is converted to a header file that is included in the original code,
requiring the program to be completely compiled from scratch. We wanted a simpler sys-
tem that allows the user to insert instrumentation at the LLVM Intermediate Representation
(IR) stage, without the need for a complete rebuild. Since FreeBSD uses LLVM as the system
compiler this would make it easier to include our method in the build system.

Our solution to this problem was Loom, a custom LLVM optimization (opt) pass that al-
lowed the user to insert arbitrary code into a program during compile time without modifi-
cation of the original source code and without having to recompile the entire program each
time. As you can see in Figure 1, Loom integrates into the FreeBSD build process as an ad-
ditional opt pass. The original source code is compiled to LLVM IR first and using the Loom
pass and a YAML policy file the additional code is inserted into the program before the final
linker stage.

LLVM
Frontend
(Clang/

Clang++)

LLVM opt
pass

LLVM opt
pass

LLVM
Backend

Loom

Loom PolicySource Code Instrumented
Binary

…

LLVM
Bytecode

Instrumented
LLVM

Bytecode

…

Figure 1: Loom Build Process

Unlike the original USDT method, changes to source code are not needed. In fact, the
source code of the application is not needed. As long as a LLVM IR representation of the
code is available, the instrumentation can be added to the program.

2 of 5

7FreeBSD Journal • July/August 2022

One CADTES use case is to capture all authentication attempts using the Pluggable Au-
thentication Modules (PAM) system. These can come from many sources such as SSH or
sudo, so to capture them all we targeted the PAM library itself. A sample Loom policy YAML
file is given in Listing 1 showing how we where able to instrument PAM to log authentication
attempts from userspace. The example is specifically instrumenting the pam_authenticate
function, capturing all of the arguments to the call. Metadata is used to add context to the
data when it is received by DTrace, allowing the author of the corresponding DTrace script
to differentiate data from various userland probes. As a result, we are able to capture the us-
ername (and other details) of login attempts and the executables from which they come.

strategy: callout
dtrace: userspace
functions:
- callee: [entry]
 metadata:
 name: auth
 id: 1
 name: pam_authenticate

Listing 1: Loom configuration for logging PAM authentication attempts

In the majority of cases, this solution does not require the user to write custom code as
in USDT. To get data into the DTrace system, an experimental system call was written using
the SDT provider from DTrace to pass trace data to the kernel. The policy file provides all of
the information needed to add context to the user data when tracing. The only time addi-
tional development is needed is when the user wants to transform the data in some way be-
fore it is sent to DTrace.

Using Loom allowed us to reproduce the DTrace
USDT functionality without having to integrate the
USDT toolchain into FreeBSD build process. The
system does require a custom system call but it was
a simple change that provided the flexibility to add
and remove instrumentation to applications with-
out any modifications to the source code. Since
the operating system already uses LLVM we could
integrate Loom into the build by adding additional
build targets for programs and libraries to produce
the LLVM IR output. Then Loom could be called as an additional build step where needed.

The FreeBSD base system contributed to the ease of this development. The base system
of the operating system not only includes the kernel and userland source to be able to run a
fully functional operating system, but it also includes a unified system for building FreeBSD.
In order to use Loom in our research project we needed to be able to build program and
libraries as bit code objects (BCOs). These BCOs are a binary form of LLVM IR that Loom
can modify for instrumentation and transformation. Since all binaries in FreeBSD use a cen-
tral set of build scripts we only had to modify these to create BCOs for any part of the base
system. Once we had made these modifications we could apply Loom to any program or li-
brary necessary.

3 of 5

In the majority of cases,

this solution does not

require the user to write

custom code as in USDT.

8FreeBSD Journal • July/August 2022

Expanding Loom
For some CADETS use cases it was necessary to transform the data collected before

passing it to DTrace. For example, to avoid name collision between servers in an instru-
mented distributed system the project uses Globally Unique Identifier (GUID) for the us-
ernames so they could be individually tracked in the outputs. To achieve this, a mechanism
was added to allow external code to be inserted into a program through Loom. The user
can add calls to custom functions or libraries as long as the symbols are available at the link
stage of the build process. Though this function-
ality was originally designed to modify data before
logging it, the concept opened up new possibili-
ties such as code transformation in addition to in-
strumentation.

Since the conclusion of the CADETS project,
we have been working on exploring these possibil-
ities, such as the replacement of code within a pro-
gram to use a new API. For example, to test a new
network API would traditionally require changes to
source code, replacing calls to the old API with calls
to the new one. This process is tedious and prone
to human error. We are expanding Loom to han-
dle such tasks without the need for source code
changes. By matching a set of function calls, we
can have Loom remove the original code and re-
place it with one or more calls using of the new API.

One current limitations to this work is the policy file which is used to specify the chang-
es that Loom needs to make. Though we have the ability to make code transformations
with Loom, the current YAML based format is not expressive enough to fully specify trans-
formations. We are currently working on a language that will overcome this limitation.
The aim of this language is to allow for very specific specification of transformations to be
made by Loom.

The Future of Loom on FreeBSD
Loom is a full featured instrumentation and transformation framework. Loom has the

ability to instrument functions and function calls as well as accesses to structure fields, glob-
al variable and pointers. One to one function call replacement is fully implemented and
there is functionally to replace calls to a sequence of functions, though further configura-
tion work is required to make this generally usable. Additionally there is the ability for many
of these configuration to be matched using wildcards or limited within the scope of certain
files from the source code.

Since its use in the CADETS project, Loom has seen interest from developers on oth-
er operating systems such as Linux. Though we have made efforts to support these us-
ers, Loom’s main development continues on FreeBSD. With the upcoming addition of Link
Time Optimization (LTO) in the FreeBSD build system, we will investigate the possibility of
using Loom in the unmodified FreeBSD build system. We will also be use FreeBSD to test
the new Loom configuration language, investigating areas where the transformation system
can help maintain ports of software from other operating systems.

4 of 5

Loom is a full featured

instrumentation

and transformation

framework.

9FreeBSD Journal • July/August 2022

For more information on Loom and to follow future developments you can check out
the project page at github.com/cadets/loom.

Acknowledgements
The author would like to thank those who helped and guided me during this work includ-

ing George Neville-Neil and Domagoj Stolfa for their DTrace help. Thanks to Ed Maste for
his answers to my FreeBSD questions whether it was directly or to connect me with some-
one who knew the answer. Many thanks to all the members of the CADETS Project includ-
ing Robert Watson, Arun Thomas, Silviu Chiricescu, Jon Anderson and Amanda Strand.

The FreeBSD community was great help to our efforts. Whether it was on IRC, mailing
lists or at BSD conferences, it was generally easy to connect with the community and get
answers to questions when we ran into issues. Thanks to the members of the community
who were more than happy help out.

Finally the author would like to thank Jon Anderson for his feedback to improve the
manuscript.

This work has been sponsored by the Defense Advanced Research Projects Agency
(DARPA) and the Air Force Research Laboratory (AFRL), under contract FA8650-15-C-7558.
The views, opinions, and/or findings contained in this paper are those of the authors and
should not be interpreted as representing the official views or policies, either expressed or
implied, of the Department of Defense or the U.S. Government.

1 Anderson, J; Neville-Neil, G. V.; Thomas, A.; Watson, R. N. M. “Cadets: Blending Tracing and
Security on FreeBSD,” FreeBSD Journal, May/June 2017, 12 - 17. 5

BRIAN KIDNEY is an Instructor of Cybersecurity at the College of the North Atlantic in St.
John's, Newfoundland, Canada. He is also completing a PhD in Computer Engineering at
Memorial University. His research interests include privacy and security, specifically as they
relate to operating systems and programming languages. Brian has 20 years of experience
as a Software Engineer developing software for multiple industries.

5 of 5

https://github.com/cadets/loom

