
47FreeBSD Journal • September/October 2022

Performance analysis is a difficult subject — a field where any
claim must be backed up with a serious amount of rigor, detail
of the work done, and where you must be very confident in your
results.

In computer science we are almost dissuaded from worrying
about performance issues. the frequently taught Knuth quote,

	 Premature optimization is the root of all evil
is used to keep junior developers on track to not worry too
much about the small things.

Most of the time, this advice is given with good intentions.
When you are learning, it is better to finish projects — to prog-
ress — rather than getting lost in minute details. But this has had
the opposite effect of making information on improving performance of real systems hard
to come by.

The full Knuth quote,
	 We should forget about small efficiencies, say about 97% of the time:
	 premature optimization is the root of all evil.
		 Yet, we should not pass up our opportunities in that critical 3%.
		 A good programmer will not be lulled into complacency by such
	 reasoning, but he will be wise to look carefully at the critical code;
	 but only after that code has been identified

tells us there are times where we should really care and our efforts spent on investigation
will be rewarded.

There have been several performance books written in the last few years that I hold in
high regard and have recommended many times. Brendan Gregg’s most recent books
Systems Performance (which acts to replace the long favored DTrace performance book)
and BPF Performance Tools are well known and come from one of the world’s leading ex-
perts in investigating and designing tools to better understand real-world, system perfor-
mance. The lesser known, but excellent (and open source) Performance Analysis and Tuning
on Modern CPUs by Denis Bakhvalov, dives deeper into why CPUs are slow and how com-
puters can the best make use of them.

The Gregg books act as excellent introductory material for the performance expert to
be. They offer a high-level view of looking at systems and using tools. BFP Performance
Tools and Systems Performance offer methodology for the performance analyst and very

REVIEW BY TOM JONES

Understanding
Software Dynamics
by Richard L. Sites

1 of 3

48FreeBSD Journal • September/October 2022

high-quality reference material that should be your first port of call when trying to debug
an issue. With these two books and reading the source for the accompanying tools, you can
learn how to build your own performance tools, but the books don’t go into depth on what
makes a good performance analysis tool.

Bakhvalov’s Performance Analysis and Tuning on Modern CPUs shows how the perf set
of tools can be used on Linux to explore programs. It introduces the core fundamentals a
developer would need to know to understand the output of perf and how different fac-
tors influence software performance as analyzed with perf. The book is — again — a great
introduction, but lacks solid examples (which are available as free course material from the
author) and lacks the next steps for the developers who need their own custom tools to de-
bug their problems.

Understanding Software Dynamics (USD) by Richard L. Sites stands out from the other
recent works. It contains introductory material into how computers work and the factors
that determine their performance, and it expands on this by
practically describing the limitations that performance tools
must meet to be useful to use on real systems.

The author is a veteran of the computer industry. He de-
veloped the first CPU performance instructions while at
DEC and has had a long career investigating performance
issues from CPU level bottlenecks up to entire data center
wide application stacks while working with Google and Tesla.

USD acts as a practical introduction to exploring the
performance of large systems as their dynamics change.
In large systems, there are a lot of transactions moving
through at a time — the performance of individual transac-
tions is normally inconsequential. USD looks at the distribu-
tion of these transactions. Problems live with the outliers:
Total systems performance is made of both the fast and
the slow transactions and USD offers guidance to discover
what the best- and worst-case performance should be in
a system and how to explain what is happening when the
90th percentile is outside these bounds.

USD follows a data center RPC system as its core example and builds tooling to discover
where performance issues can appear. The first 7 chapters look at measurement and how
different system components contribute to final results. Here USD digs into very fine de-
tail, offering guidance to understand why CPU instructions, memory, disk or network access
might be the cause of performance bottlenecks in a system.

Throughout these explorations, the lesson is that looking at individual subsystems is not a
good model for thinking about the performance of the entire system. Sites shows his think-
ing for establishing what the best- and worst-case performance of any computer subsystem
should be and demonstrates how to test these estimates in the real world.

The second part of USD covers how to observe and measure the performance of real
systems while maintaining acceptable levels of overhead. In this part, the reader learns dif-
ferent ways that the tools we use today are implemented and the opportunities for observa-
tion they provide. Here we are introduced to the design criteria for observation tools.

The third part builds on the lessons of the first two introductory parts of the book and

Understanding

Software

Dynamics (USD)

by Richard L. Sites

stands out from

the other recent

works.

2 of 3

49FreeBSD Journal • September/October 2022

shows a real implementation of the tracing ideas by introducing the KUTrace framework
kernel — userspace tracing framework.

KUTrace is an example of a high bandwidth logging framework and has to be imple-
mented with low overhead. It offers an extra source of information for debugging overly
long running transactions.

KUTrace is a patch set for Linux that adds a framework for adding small ~64byte log en-
tries to points in the kernel and userspace. The tracepoints are __predict_false branches
by default. Once the KUTrace kernel module is loaded, they become active and start being
saved into a buffer in the kernel.

USD goes into detail explaining the design of the log en-
tries that KUTrace uses, the system interface and the oper-
ation of the kernel module.

Sites rounds out the text with 9 final chapters, each of
which practically walks through a problem in one of the
performance domains that book has examined. There is
an example problem for a case of too much CPU execu-
tion, executing slowly and waiting for the CPU, Memory,
Disk, Network, Locks, Time, and queues. Each of these
chapters is a lesson acting on information presented earli-
er in the book.

Understanding Software Dynamics is an excellent addi-
tion to the library for anyone interested in a practical un-
derstanding of performance issues in real systems. It does a
great job of introducing required background understand-
ing without going into such depth that it is difficult to fol-
low. Several chapters come with examples that help rein-
force and expand on the lessons provided in the preceding
text and they are focused on improving understanding.

Sites is clear in his explanation throughout, there are high quality figures taken from real
systems at Google and from the example systems. Added color comes from the author’s
own experiences working on performance.

USD is a well written and carefully constructed book. It supports itself well and is ap-
proachable for a reader who hasn’t previously delved into performance analysis. For a reader
with a lot of experience, there is still much information to learn from here about the specif-
ics of performance of different computer components and the new tooling the author in-
troduces.

TOM JONES, FreeBSD Developer and co-host of the BSDNow Podcast, wants FreeBSD-
based projects to get the attention they deserve. He lives in the North East of Scotland and
offers FreeBSD consulting.

3 of 3

It does a great

job of introducing

required background

understanding

without going into

such depth that it is

difficult to follow.

