
21FreeBSD Journal • September/October 2022

P luggable Authentication Modules (PAM) are perhaps the least well understood,
yet most broadly deployed part of FreeBSD. Every FreeBSD system uses PAM, via
the OpenPAM suite. Most sysadmins don’t touch it. If they have no choice but to

change it, they follow cryptic online posts that look vaguely sensible. PAM is simpler than it
looks, but its simplicity lets you accidentally achieve complexity. The big trick with PAM is to
not do that.

In this article we’ll look at PAM’s components and configurations, help you avoid a few
common mistakes, and figure out how to debug your mistakes.

What Is PAM?
Everybody agrees that usernames and passwords are not a great system of authentica-

tion. Nobody agrees on what should replace them. Different environments have different
needs. Maybe you need Kerberos, or LDAP, or SSH certificates. Perhaps you authenticate
sysadmins with hardware DNA scanners, or with
bite guards molded to individual dental patterns.
Each possible authentication method needs its
own code.

You could try to compile every program to sup-
port every possible authentication method, but
that leads to unsustainable code growth.

Or you could build a compatible shared library
for each authentication method, and load that li-
brary only if you want to use that method. That’s
the “pluggable” part. Each library is an “authentica-
tion module,” or just “module.”

FreeBSD’s OpenPAM, like primordial Solaris
PAM, handles only authentication and authentica-
tion-related tasks. If you ever work with Linux, you’ll
see that the Linux-PAM developers decided that
standard PAM was insufficiently complex and wedged other functions into their authentica-
tion stack. The features and tools found in OpenPAM work in most any PAM stack.

PAM Configuration
Configure PAM for FreeBSD’s base system in /etc/pam.d, and PAM for packages in

/usr/local/etc/pam.d. Each daemon has its own configuration file, named after the pro-

BY MICHAEL W LUCAS

1 of 6

PAM Tricks
and Tips

PAM is simpler than it

looks, but its simplicity

lets you accidentally

achieve complexity.

22FreeBSD Journal • September/October 2022

gram, that defines the PAM policy. Go look at the configuration for sshd(8), /etc/pam.d/
sshd. You’ll find a bunch of lines like this.

auth sufficient pam_opie.so no_warn no_fake_prompts
auth requisite pam_opieaccess.so no_warn allow_local
auth required pam_unix.so no_warn try_first_pass
…

Each line is one PAM rule. Each rule has four components: the type, the control, the
module, and the module arguments. The first statement here has the type auth, the con-
trol sufficient, the module pam_opie.so, and the options no_warn and no_fake_
prompts.

Rule Types
Authentication isn’t only about the user credentials. The system must also check whether

the access is permitted, provide resources for the user, and permit management of the au-
thentication system itself. That’s where the type statement comes in.

The auth type verifies the user’s authentication information and sets resource limits. If
you fat-finger your password or give a non-existent username, an auth rule kicks you out.
The auth rules also establish limits like a maximum number of processes or amount of
memory. We’ve seen auth rules above.

The account type controls access based on restrictions other than the user’s authenti-
cation. If a user tries to log in out-of-hours, an ac-
count rule blocks that access.

The session type handles server-side setup.
A command-line user needs a virtual terminal, a
home directory, and probably a log entry saying
they logged in. An anonymous FTP user should
not get a virtual terminal and is limited to a particu-
lar directory. Session rules handle all this.

Finally, the password type handles authentica-
tion updates. Forced password changes are pass-
word rules.

Controls
You’ve seen access control lists in firewalls and

server configurations. PAM rules are similar to ac-
cess control lists. Each module can either reject,
fail, or express “no opinion” on an authentication request. The control statement tells PAM
how to process each module’s decision. PAM has four common control statements: re-
quired, requisite, optional, and sufficient.

The required control means that this module must return success for the policy to per-
mit access. If this module succeeds, the user gets access unless a later rule blocks it. PAM
continues processing rules even after a required control fails.

A requisite control is much like a required control, but if an authentication module fails

2 of 6

Authentication isn’t only

about the user credentials.

PAM Tricks
and Tips

23FreeBSD Journal • September/October 2022

rule processing stops immediately. This can leak information about why authentication
failed.

Optional controls are used to support add-on functions like SSH agents or Kerberos.
They can permit or deny access if and only if no other module rejects or accepts the ses-
sion. You can use optional controls for features like adding time between a failed authenti-
cation attempt and the next attempt.

The sufficient control means that if this module succeeds and no previous required con-
trols failed, the user gets access immediately. Rule processing stops. If the control fails, PAM
does not deny access.

Modules and Arguments
PAM modules are shared libraries that imple-

ment specific authentication functionality. Pass-
words are a module. Checking LDAP is a module.
Poking your SSH agent is a module. To understand
a PAM policy, you need to know what each module
does. Every OpenPAM module, and most add-on
modules, have a man page. The first time you de-
cipher a PAM policy, you’ll read a whole bunch of
man pages.

Each module can also have arguments. While
each module can have its own arguments to han-
dle its particular needs, most also accept a handful
of common arguments. The debug flag logs extra
information, to hopefully give you a chance to figure out why authentication isn’t working as
expected. The no_warn flag silences any user feedback on why the authentication request
was rejected.

Password handling gets two special arguments, try_first_pass and use_first_pass. The
try_first_pass option reuses any password the user already entered, but if that doesn’t work,
the module may prompt for another password. The use_first_pass option declares that the
module should use the password that was already entered, and if that doesn’t work, reject
the request.

Reading A Policy
Let’s consider the sshd(8) sample rules again. These are auth rules, so they involve ac-

cepting or rejecting login credentials. Consider the first rule.

auth sufficient pam_opie.so no_warn no_fake_prompts

This rule is sufficient. If the module succeeds, the authentication request is granted, and
rule processing stops immediately.

The module is pam_opie.so. The man page pam_opie(8) tells us this supports OPIE.
You’ll need to do a little more research to see that OPIE is One-time Passwords In Ev-
erything. This rule declares that if someone authenticates with OPIE, they get access
immediately.

3 of 6

PAM modules are shared

libraries that implement

specific authentication

functionality.

PAM Tricks
and Tips

24FreeBSD Journal • September/October 2022

auth requisite pam_opieaccess.so no_warn allow_local

This rule is requisite. If it fails, processing stops immediately. That seems… harsh?
This rule is for another OPIE module, pam_opieaccess. If the OPIE users were imme-

diately granted access in the previous rule, why do we have another OPIE rule? A check of
pam_opieaccess(8) reveals that this module checks to see if a user is configured to re-
quire OPIE. A user that requires OPIE, who correctly enters their OPIE information, should
never hit this rule. They should be booted out.

Now look at the third rule.

auth required pam_unix.so no_warn try_first_pass

This is a required rule. A user who gets this far down must succeed with this module or
be denied access.

The pam_unix(8) module checks the password
file. It’s the standard username and password au-
thentication. So, this policy can be summarized as:

•	If a user succeeds at OPIE, immediately let
them in. Otherwise, keep going.

•	If a user requires OPIE, reject them. A OPIE
user with the right password will never get
here.

•	If the user enters a correct username and
password, let them in.

Most accounts don’t require OPIE, so we fall
straight through to the password file.

That’s very skimpy. What about users with inval-
id shells, or who have a shell of nologin(8)? What
about users who aren’t allowed to log in right now?
Those are account rules, not auth rules. If you
check /etc/pam.d/sshd, you’ll see a section of account rules specifically checking user ac-
cess.

Adding Authentication Methods
People most often stumble into PAM when their organization starts requiring two-fac-

tor authentication. Maybe that’s Google Authenticator, or a Yubikey, or Cisco’s Duo. Perhaps
you have specialized authentication hardware than reads voiceprints or fingerprints or aro-
maprints. We’ll use the last three to build some less common authentication rules. Here’s
a fairly straightforward one. I haven’t read the documentation for any of these nonexistent
modules, so I’m going to ignore the options.

auth required pam_voice.so
auth required pam_finger.so
auth required pam_aroma.so

PAM Tricks
and Tips

Most accounts don’t

require OPIE, so we fall

straight through

to the password file.

4 of 6

25FreeBSD Journal • September/October 2022

All three policies are required. The user must submit a correct voiceprint and fingerprint,
plus they must smell right, to authenticate.

auth required pam_voice.so
auth requisite pam_finger.so
auth required pam_aroma.so

The middle policy, for pam_finger.so, is requisite. If this policy fails, checking immedi-
ately stops and the application is informed of the failure. Performing aroma analysis is ex-
pensive, and we don’t want to waste resources.

Perhaps you want to allow the user a choice of what authentication method to use.

auth sufficient pam_voice.so
auth sufficient pam_finger.so
auth required pam_aroma.so

Here, our first two authentication methods are sufficient. The user can use a voiceprint
or a fingerprint. If those fail, the user must submit their stink. I could also make the last rule
sufficient, but if the policy ends here, I’d want to add another rule invoking pam_deny.so to
explicitly reject authentication.

PAM Debugging
Your carefully tuned policy doesn’t work? Too bad. PAM provides very little explicit de-

bugging. Your three choices are the debug argument, pam_echo, and pam_exec.
Many modules support a debug argument. This might feed debugging to the user. It

could dump debugging to a log file. It could do nothing discernible. Modules ignore unsup-
ported arguments, so adding debug arguments throughout your policy won’t break PAM
any worse.

The pam_echo(8) module takes a string of text as an argument. The string gets passed
back to the user. These rules are always of type optional. Let’s add some echo debugging to
one of our experimental policies.

auth optional pam_echo.so “auth policy starting, trying voice”
auth sufficient pam_voice.so
auth optional pam_echo.so “voice failed, trying finger”
auth sufficient pam_finger.so
auth optional pam_echo.so “finger failed, taking a whiff”
auth required pam_aroma.so
auth optional pam_echo.so “how did we get here?”

If you think this looks like scattering printf() calls through your code, you’d be right. It
was good enough for Sun in the 1990s so it’s good enough for you.

If the program feeds the output back to the user, they’ll get the debugging statements in
their terminal.

PAM Tricks
and Tips

5 of 6

26FreeBSD Journal • September/October 2022

If the debug arguments don’t provide useful information, and the program doesn’t echo
debugging output back to the user, then you get to get complicated with pam_exec(8).
The pam_exec module runs arbitrary commands for you. Yes, this means you could write a
Perl script that checks user credentials against a Microsoft Excel spreadsheet over the net-
work, but I hope you don’t hate yourself that much. Most of the time, pam_exec is a way for
intruders to mess with your authentication, but it’s perfectly suited for calling a small shell
script. Like this.

auth optional pam_exec.so /usr/sbin/pamdebug.sh pam_voice
auth sufficient pam_voice.so
auth optional pam_exec.so /usr/sbin/pamdebug.sh pam_finger
auth sufficient pam_finger.so
auth optional pam_exec.so /usr/sbin/pamdebug.sh pam_aroma
auth required pam_aroma.so
auth optional pam_exec.so /usr/sbin/pamdebug.sh impossible_end_of_pam_rule

The script itself is very simple.

#!/bin/sh
logger “process $PPID calling $1”

This logs the process ID and what stage of the authentication you’re at. You wouldn’t
want to run this in a busy production environment where people are constantly logging on
and off, but it makes debugging on a test system simple.

PAM has many more features and options than I can cover in this simple article, but
hopefully you’ve gotten a decent idea of just how you can muck with your rules and fine-
tune authentication to annoy your users in the exact manner desired.

Good luck.

MICHAEL W LUCAS is the author of Absolute FreeBSD, FreeBSD Mastery: Jails, and forty-
eight other books. One of them was (drum roll please) PAM Mastery. Learn more at https://
mwl.io.

PAM Tricks
and Tips

6 of 6

