
33FreeBSD Journal • September/October 2022

The last column introduced typical examples of IPv6 deployment for a small network
with a single uplink router, such as a network in your home. It did not cover some com-
plex configurations involving DHCPv6 and/or PPPoE because we needed some more

technical knowledge of IPv6 first. Before diving into such complex cases, let’s learn more by
configuring your FreeBSD box. This column will specifically cover the following two topics:
what to do when you cannot get IPv6 Internet access from your ISP and how to configure
IPv6 in essential utilities included in the FreeBSD base system.

Another Way To Get IPv6 Internet Access
The deployment scenarios in the last column assumed that your ISP offers an IPv6 ser-

vice. In that case, the router between your ISP and your home network has an IPv6 GUA¹. All
you have to do is a configuration of one or more IPv6 addresses and an IPv6 default router
address pointing to the router.

So what to do if you get no IPv6 service? While the number of ISPs offering IPv6 service
to their end-users is increasing, most are still optional and not their main service as of 2022.
One of the ways to get access to the IPv6 Internet is the use of a tunneling connection. Fig-
ure 1 shows how “tunneling” works. Network A is an IPv6 network with IPv6 Internet access.
Network B is an isolated IPv6 network. These two networks can be connected over the IPv4
Internet if they have an IPv4 address for the endpoints. Tunneling is a protocol translation
technique that delivers a packet as a payload of another protocol. Namely, IPv6 packets can
be delivered using IPv4 protocol, such as IPv4 TCP and IPv4 UDP. If you are familiar with the
word VPN or virtual private network, you can understand tunneling as the technical founda-
tion of VPN. Once the tunneling works, hosts on Network B can access the IPv6 Internet via
Network A.

Network A
(IPv6)

Network B
(IPv6)

IPv4 Internet

IPv6-over-IPv4
Tunnel Endpoint

IPv6 Internet

IPv6-over-IPv4
Tunnel Endpoint

Figure 1
Figure 1: IPv6 networks connected over IPv4 communication

1 of 10

BY HIROKI SATO

Pragmatic IPv6
(Part 3)

34FreeBSD Journal • September/October 2022

Several tunneling services support IPv6-over-IPv4 tunneling, which you can use for free.
One of the reliable services, Hurricane Electric IPv6 Tunnel Broker, will be explained in the
following subsections.

Hurricane Electric IPv6 Tunnel Broker
Hurricane Electric is a California-based Internet service provider focusing on Internet

transit, data center colocation, and hosting services. Their network coverage is the most
enormous scale in the world. It is usually unsuitable for a written article to introduce a spe-
cific Internet service like this because it rapidly becomes stale. Still, HE’s IPv6 tunneling ser-
vice has been maintained for over 20 years and been a good testing environment for peo-
ple with no native IPv6 access. So the author recommends it as a way to get IPv6 Internet
access for your experimental purpose. Although you cannot assume that it has the same
reliability and performance as your native IPv4 Internet connection by your ISP, HE’s service
performs well, at least for personal use. And another advantage is that HE offers a /48 IPv6
address prefix. /48 is a recommended prefix length for ISPs so that their end-users can en-
joy multiple LANs using the 16-bit². However, many ISPs offer offer only a /64. prefix or two.

Let’s see how to configure the tunneling on your FreeBSD box.

Service Account Registration
The tunneling uses two endpoints on your network and in HE’s network. Between them,

a virtual network will be established over the IPv4 Internet. The endpoint on your side, a
FreeBSD box, will act as an IPv6 router.

You must have a global IPv4 address on your FreeBSD box as a prerequisite. The tunnel-
ing uses IP packets with protocol number 41. This number is the same as IPv6, so the pack-
et-filtering firewall is unlikely to block them. You must not use IPv4 network address transla-
tion by using the IPv4 private address space (10.0.0.0/8, 172.16.0.0/12, or 192.168.0.0/16).

Visit https://www.tunnelbroker.net/ and create your service account. After that, choose
“create regular tunnel” in the web interface. Enter the IPv4 address of your endpoint, and se-
lect one of the HE’s endpoints. All IPv6 packets from your network will be delivered to HE’s
network once before reaching the IPv6 Internet, so you should choose the nearest one. The
author lives in Tokyo, so HE’s Tokyo endpoint is the best, for example. By clicking the “create
tunnel” button, your endpoint on HE’s side will be configured. You need to click it twice be-
cause the first click checks if the endpoint works or not by sending IPv4 ping packets from
HE’s network. Ensure your firewall does not block the incoming ICMP echo request/reply.
The IPv4 source address is shown in the list of HE’s endpoints.

Network Parameters
Four IP addresses, “Server IPv4 Address”, “Server IPv6 Address”, “Client IPv4 Address”, and

“Client IPv6 Address” will be shown on the “Tunnel Details” page.
The Server IPv4 Address is the address for the endpoint on HE’s side, and the Server IPv6

Address is for the IPv6 default router that should be used on your network. The Client IPv6
Address is for your endpoint.

Note that you must be aware of two networks — one between the two routers (this net-
work is virtual) and your LAN. See Figure 2 for more details. A yellow circle means an inter-
face. These two networks are separated by your router, which is the endpoint simultane-
ously in this configuration so that you will get two IPv6 prefixes. You can see the Server and
Client IPv6 Address are on the same subnet prefix. That is the virtual network between the
two endpoints. The prefix for your IPv6 LAN is shown as “Routed IPv6 Prefixes”. You can

2 of 10

35FreeBSD Journal • September/October 2022

configure it to the LAN side on your router. By default, you will get a /64 prefix. By clicking
“Routed /48” prefix button, you will get a /48 prefix in addition to it.

HE’s network

Your network

IPv4 Internet

IPv6-over-IPv4
Tunnel Endpoint
(HE’s router)

IPv6 Internet

IPv6-over-IPv4
Tunnel Endpoint
(your router)

virtual lin
k in IPv6

Server IPv6 Address

Client IPv6 Address

Client IPv4 Address

Server IPv4 Address

Routed IPv6 Prefix

re
al

 li
nk

 in
 IP

v4

real link in IPv4

real link in IPv6

real link in IPv6

Figure 2Figure 2: Tunneling between HE’s network and your network

Now you are ready to configure your FreeBSD box.

Configuration on Your FreeBSD Box
The Tunnel Details page has “Example Configurations” tab and you can see a configura-

tion example for FreeBSD 4.4 or later like this:

ifconfig gif0 create
ifconfig gif0 tunnel IPV4-CLIENT IPV4-SERVER
ifconfig gif0 inet6 IPV6-CLIENT IPV6-SERVER prefixlen 128
route -n add -inet6 default IPV6-SERVER
ifconfig gif0 up

The keywords like IPV4-CLIENT mean the four parameters. This example is not wrong,
but the following version is better:

ifconfig gif0 create
ifconfig gif0 inet tunnel IPV4-CLIENT IPV4-SERVER
ifconfig gif0 up
ping6 ff02::1%gif0
(hit Ctrl-C)
ifconfig gif0 inet6 IPV6-CLIENT IPV6-SERVER prefixlen 128
route -n add -inet6 default IPV6-SERVER
ifconfig bge0 inet6 ROUTED-IPV6-PREFIX/64
sysctl net.inet6.ip6.forwarding=1

The “gif0” is an instance of gif(4) pseudo-interface network driver on FreeBSD. An
IPv6 packet is encapsulated in an IPv4 packet³ as shown in Figure 3. A rectangular represents
a bit sequence from left to right. An IPv4 packet associated with a transport protocol, such
as TCP or UDP, typically consists of an IPv4 header, a transport-layer header, and the payload
(data). The three parts are concatenated to form a single packet and the packet is sent over

3 of 10

36FreeBSD Journal • September/October 2022

the network. In the same way, an IPv6 packet with the same transport protocol consists of
the three parts. The difference is the first element.

If we consider an IPv6 packet as data for an IPv4 packet, we can send the IPv6 packet
over IPv4 network. On the sender side, a router builds an IPv4 packet that has an IPv6 pack-
et inside, and on the receiver side, another router extracts the IPv6 packet. This occurs on
HE’s router and your router when using gif(4) interface. In practice, encapsulation of an
IPv6 packet into an IPv4 packet is done by prepending an IPv4 header to the IPv6 packet, as
shown in Figure 3 because the transport-layer header is almost the same as each other.

To configure this interface, you need two sets of addresses. First, you have to create a
new gif(4) interface by using ifconfig gif0 create. Then the tunneling can be config-
ured by using “tunnel” keyword in the ifconfig(8) utility with two addresses for the end-
points. The first address is yours, and the second address is HE’s.

IPv4 Header Transport Layer Header
(UDP, TCP, etc.) DataNormal IPv4 Packet

Data Top to End

IPv6 Header Transport Layer Header
(UDP, TCP, etc.) DataNormal IPv6 Packet

IPv6 Header Transport Layer Header
(UDP, TCP, etc.) DataIPv6-in-IPv4 Encapsulated Packet IPv4 Header

Figure 3

Figure 3: Encapslation used in gif(4) interface

After that, a virtual network is established. Note that this virtual network has no connec-
tion state, such as “connected” or “disconnected”. Packets are just sent as “IP datagram” be-
tween two IPv4 addresses on demand. An IPv6 packet is encapsulated, as shown in Figure
3, and sent as an IPv4 packet to the HE’s endpoint, and it will be decapsulated in the HE’s
network. While the IPv4 packets may be lost somewhere on Internet, the error recovery is
made in the upper-layer protocol, namely the IPv6 packet inside the IP datagram. Addresses
for the tunneling are often called “addresses for the outer protocol”. The outer protocol, in
this case, is IPv4.

To check if the virtual network works, you can send an IPv6 ping. After the second line of
the example configuration, enter ifconfig gif0 up and try an IPv6 ping by using the au-
tomatically-configured LLA⁴ of the gif0:

ifconfig gif0 create
ifconfig gif0 tunnel IPV4-CLIENT IPV4-SERVER
ifconfig gif0 up
ping6 ff02::1%gif0
PING6(56=40+8+8 bytes) fe80::80c8:4a75:123a:8a32%gif0 --> ff02::1%gif0
16 bytes from fe80::80c8:4a75:123a:8a32%gif0, icmp_seq=0 hlim=64 time=0.084 ms
16 bytes from fe80::4a52:2e06%gif0, icmp_seq=0 hlim=64 time=4.765 ms(DUP!)
16 bytes from fe80::80c8:4a75:123a:8a32%gif0, icmp_seq=1 hlim=64 time=0.081 ms
16 bytes from fe80::4a52:2e06%gif0, icmp_seq=1 hlim=64 time=2.738 ms(DUP!)
ˆC
--- ff02::1%gif0 ping6 statistics ---
2 packets transmitted, 2 packets received, +2 duplicates, 0.0% packet loss
round-trip min/avg/max/std-dev = 0.081/1.917/4.765/1.970 ms

4 of 10

37FreeBSD Journal • September/October 2022

The virtual network is working fine if you get the (DUP!) response. This is because you
should have a reply from the router on the HE’s side and another from the gif0 interface
itself. If you get no response from another side of the endpoint, double-check the config-
ured IPv4 addresses and packet filters located between the two.

Then you need to configure actual IPv6 addresses for communication. This can be done
using the ifconfig(8) utility, the sixth line of the example configuration. This line config-
ures a point-to-point network that has only two IPv6 nodes. At this point, you can send an
IPv6 ping to IPV6-SERVER.

The above configuration is sufficient if you just want access to the IPv6 Internet from the
box. Your FreeBSD box can now work as an IPv6 host node. To make it a router for your /64
and /48 LANs, you have to configure the default IPv6 route to IPV6-SERVER and enable the
IPv6 packet forwarding feature. The following part in the example does it:

route -n add -inet6 default IPV6-SERVER
ifconfig bge0 inet6 ROUTED-IPV6-PREFIX/64
sysctl net.inet6.ip6.forwarding=1

This configuration assumes that the interface facing your LAN is bge0. ROUT-
ED-IPV6-PREFIX is your prefix assigned by HE’s service. You should have both /64 and /48.
You can configure both on the same interface or on a different interface.

There is one thing you need to think about here. What IID⁵ should be used? That is the
router’s address on the LAN.

You can see that IPv6 addresses used for the tunneling interface were ::1 and ::2 in their
IIDs. That is one of the strategies. However, the author recommends using the all-zero ad-
dress for simplicity. If you get 2001:db8::/48 from HE, pick up a /64 network in that range,
say 2001:db8:1::/64, and configure it as the router address. The IID is all-zero. This looks
scary because an all-zero host address in IPv4 has a special meaning. Although it has never
been clearly defined in RFC or other specifications, some traditional network implementa-
tions have recognized it as a broadcast address, not a unicast one. one. While the all-zero
host address works with no problem on FreeBSD, the author guesses that you have avoided
it in practice if you learned TCP/IP network in 20th century. In IPv6, the all-zero IID is com-
pletely valid. There is another reason why the all-zero address is suitable for a router, but it
will be covered in the later columns.

After configuring the default router and the router address on the LAN, you can config-
ure the hosts on the LAN. See also the last column about what options you can take. Run-
ning rtadvd(8) on bge0 to enable automatic configuration is highly recommended.

Configuration in /etc/rc.conf
Once you confirm if your IPv6 tunnel works, put the configurations by hand into /etc/

rc.conf:

cloned_interfaces="gif0"
ifconfig_gif0="inet tunnel IPV4-CLIENT IPV4-SERVER"
ifconfig_gif0_ipv6="inet6 IPV6-CLIENT IPV6-SERVER prefixlen 128"
ipv6_defaultrouter="IPV6-SERVER"
ipv6_gateway_enable="YES"
ifconfig_bge0="inet6 ROUTED-IPV6-PREFIX/64"

5 of 10

38FreeBSD Journal • September/October 2022

Before rebooting, you can check if it works by using service(8) command like this. Two
ping6 are to check the tunnel endpoint reachability and the default router configuration:

service routing start
service netif restart gif0
ping6 ff02::1%gif0
ping6 IPV6-SERVER

That’s all. You can now build IPv6-capable Internet servers on your LAN because the con-
figured IPv6 addresses are reachable from the IPv6 Internet.

There is one additional comment about ipv6_defaultrouter. While the above exam-
ple uses IPV6-SERVER, it can also be the router’s LLA on HE’s side, you can see by sending
a ping, or you can set it to “-interface gif0”. The former is not recommended because
the LLA can change when HE changes its equipment. It is recommended to use an LLA
for a static route only when it is manually configured and under your control. The latter is
another way to simplify the configuration. Because gif0 is configured as a point-to-point
interface, the route to the router on the HE’s side can be specified by using the interface
name on your side. Doing this allows you to use a consistent configuration even if the ad-
dress IPV6-SERVER is changed.

Using IPv6 in Essential Utilities
Another topic in this column is practical configuration examples for software in the FreeBSD

base system. After you obtain access to the IPv6 Internet, let’s make software use of IPv6.

General Rules and Pitfalls
From the user’s point of view, the most significant difference is the notation of an ad-

dress. Except for that, TCP and UDP work just like IPv4. So you can get started by replacing
an IPv4 address in a configuration file with one in IPv6. The first column covered OpenSSH
as an example. Let’s see what change is required.

Configurations for the sshd(8) daemon is stored in /etc/ssh/sshd_config. You can
edit it directly, but modifying the configuration using command-line flags allows you to
keep the default configuration file intact. For example, you can put the following lines into
/etc/rc.conf to change some of the configurations partially:

sshd_enable="YES"
sshd_flags=" \
 -oPort=22 \
 -oUsePAM=no \
"

Let’s go back to the IPv6 configuration topic. The sshd(8) daemon listens to tcp/22 in
both IPv4 and IPv6 by default. You can see the following lines in /etc/ssh/sshd_config.
All lines are commented out, but it means they are enabled by default:

#AddressFamily any
#ListenAddress 0.0.0.0
#ListenAddress ::

6 of 10

39FreeBSD Journal • September/October 2022

“::” is an IPv6 address. This all-zero address is called “unspecified IPv6 address”. Note that
this is the all-zero subnet prefix and the all-zero IID simultaneously, not the same as all-zero
IIDs in the previous section. This particular IPv6 address means any of IPv6 addresses. So the
sshd(8) daemon listens to all of the IPv6 addresses configured on the box.

Like this, some software simply adopt raw IPv6 addresses in the configuration file. In
that case, you can write an IPv6 address instead of IPv4 without further consideration. The
sshd(8) is smart enough to distinguish which address family is used. If you want to restrict
IPv6 addresses for the sshd(8) daemon, you can put a -oListenAddress option:

sshd_enable="YES"
sshd_flags=" \
 -oPort=22 \
 -oUsePAM=no \
 -oListenAddress=2001:db8::1 \
"

Although IPv6 addresses in a configuration file should be written in the recommended
way in RFC 5952⁶, almost all of software accept a redundant notation such as 2001:0db8:0
000:0000:0000:0000:0000:0001. And if it is an LLA, you must add %zoneid part.

However, some do not use raw IPv6 addresses because they break the backward com-
patibility with IPv4. Let’s see syslogd(8) as an example:

syslogd_enable="YES"
syslogd_flags="-s -cc -b [fe80::f4:a6ff:fe43:50b%epair5b]"

This is one of the configurations used on the author’s FreeBSD box. The syslogd(8)
daemon has a -b option to choose the listening address and port number. It listens to the
address and accepts incoming UDP packets as a logging information source. The address
format in IPv4 is “-b address:service”. The service is a port number or a service name listed
in /etc/services. Thus the syslogd(8) daemon cannot recognize which colon is for “ser-
vice” part if a raw IPv6 address is used.

To solve this issue, the syslogd(8) daemon uses a format like “[ipv6-address]:service”. An
IPv6 address must be enclosed with square brackets. If there is the %zoneid part, it must be
inside the brackets. This is a popular format among software using “address:port”.

Although this square-bracket format works if the software supports it, you have to be
aware of the brackets are one of the meta-characters of shell programs such as /bin/sh.
Actually, the above example for syslogd(8) does not work because the square brackets
are sometimes interpreted as meta-characters. A pair of brackets will be replaced with a file
or directory name if the string matches. It works if there is no matched name, but if there is
any, the configuration fails strangely. The following is another working example:

syslogd_enable="YES"
syslogd_flags=" \
 -b 192.168.0.10 \
 -a 192.168.0.0/24 \
 -a [fe80::ffff:2:200%bridge0]:* \

7 of 10

40FreeBSD Journal • September/October 2022

 -b [fe80::ffff:1:202%bridge0] \
 -a [fe80::%bridge0]/64 \
"

You can see “*” as an argument of the -a option. This means the daemon accepts any
UDP port. This may match one or more filenames and be replaced when the command
line is evaluated. You might consider that this can be solved using “\” just before “*”. It may
or may not work because it depends on how the shell variable is evaluated. So you must be
careful about the pathname expansion when software requires the square-bracket format.
Of course, there is no problem when it appears in a configuration file.

Another point where you should pay attention is how to specify a prefix length by us-
ing a format like “/64”. In the above example, the prefix length is outside the brackets.
This is because the prefix length is not a part of an IPv6 address. Locations of a raw ad-
dress, the zone id part, and square brackets are sometimes confusing. Remember that
[fe80::/64%bridge0] and [fe80::%bridge0/64] are all wrong.

The last pitfall is a case when specifying an address by using a hostname. You can often
put a hostname where an address is supposed to be specified. The hostname is usually re-
solved by name services available on the system. A single name can have multiple addresses
because DNS supports and may return multiple A and AAAA resource records. Under such
a situation, some software needs clarification about what address and which address fam-
ily will be used. There is no consistent way to specify an address family of a hostname. You
should have a unique hostname with a single address if you want to use hostnames.

Let’s see more working examples.

DNS nameserver in /etc/resolv.conf
For simplicity, the configuration of recursive DNS servers should be handled by RA mes-

sages explained in the last column. However, if you have a DNS server on the same link, you
can add an LLA manually and specify it like this:

nameserver fe80::ffff:1:35%bge0

One of the reasons why using a manually-configured LLA is that you can use the same
address on different networks. It dramatically simplifies the administration.

However, LLAs in /etc/resolv.conf do not work for software that depends on LDNS
library and does not use resolver functions in FreeBSD libc. This means that the drill(1)
utility does not work with LLAs while there is no problem with using IPv6 GUA in /etc/re-
solve.conf. And dhclient(8) does not work, either. As a workaround, you need “nam-
eserver” line by using IPv4 address or IPv6 GUA⁷.

NFS and /etc/exports
The /etc/exports file uses raw IPv6 address format. It supports the prefix length nota-

tion for “network” keyword. An example is as follows:

/a/ftproot -alldirs -maproot=0:0 -network 2001:db8:1::/64
/a/ftproot -to -alldirs -maproot=nobody:nobody -network fe80::%lagg0/10

Note that NFS does not fully support LLAs because the RPC library always handles IPv6
addresses without the zone ID. The second line can be specified, and it is a correct notation,

8 of 10

41FreeBSD Journal • September/October 2022

but it does not work, unfortunately⁸. IPv6 GUA works fine. Avoid to use LLA for NFS for
now. It should be fixed on FreeBSD 14.

Sendmail
The sendmail program also uses the raw IPv6 address format. And it supports the ad-

dress family selection keyword for each address. An example is as follows:

sendmail_enable="YES"
sendmail_flags="-L sm-mta -bd -q30m \
 -ODaemonPortOptions=Family=inet,address=127.0.0.1,Name=MTA \
 -ODaemonPortOptions=Family=inet6,address=::1,Name=MTA6,M=O \
 -ODaemonPortOptions=Family=inet,address=0.0.0.0,Port=587,Name=MSA,M=E \
 -ODaemonPortOptions=Family=inet6,address=::,Port=587,Name=MSA6,M=O \
 -ODaemonPortOptions=Family=inet,address=0.0.0.0,Port=465,Name=MSA,M=s \
 -ODaemonPortOptions=Family=inet6,address=::,Port=465,Name=MSA6,M=s \
"

You can safely use a hostname with both a single IPv4 and a single IPv6 address simulta-
neously because of “Family=” keyword.

Configuration of the transport used by MSA⁹ is handled by lines in /etc/mail/
FreeBSD.submit.mc:

dnl If you use IPv6 only , change [127.0.0.1] to [IPv6:::1]
FEATURE(‘msp’, ‘[127.0.0.1]’)dnl

In this configuration file, a modified square-bracket format is used because the sendmail
program requires the square-bracket format even for IPv4. If you want to use IPv6,
[IPv6:raw-ipv6-address] must be used.

Syslogd
The command-line options were explained in the previous section. In the configuration

file, /etc/syslog.conf, a remote host can be specified by using the raw IPv6 address for-
mat. This is an example used to receive logs from a jail environment running ISC BIND:

+fe80::e:1ff:fec5:e80b%bridge100
!-named
*.notice;authpriv.none;kern.debug;lpr.info;mail.crit;news.err; /var/log/ns/messages
!named
. /var/log/ns/named.log
!*
+@

Summary
Getting access to the IPv6 Internet by using tunneling service and configuring essential

software included in the FreeBSD base system to use IPv6 are explained.
Tunneling using gif(4) interface is not specific to Hurricane Electric IPv6 Tunnel Broker.

It can be used to build your own virtual network; while it may be too primitive for a practical

9 of 10

42FreeBSD Journal • September/October 2022

purpose — it has no support for encryption or automatic configuration. FreeBSD provides a
rich set of tools for network experiments.

While IPv6 configuration for userland programs typically involves only writing IPv6 ad-
dresses into the configuration file instead of IPv4, several pitfalls are listed in this column.
There is also software that does not handle an IPv6 LLA correctly. Try IPv6 on your box, and
if you find a problem, please report it to the author and/or the FreeBSD project.

In the next issue, more software configuration and NDP (Neighbor Discovery Protocol),
one of the IPv6 core protocols you should be familiar with will be explained.

Footnotes
1	 GUA stands for “global unicast address”, which is routable in the IPv6 Internet.
2	�Remember that an IPv6 GUA has the prefix and the IID, and the IID is almost always 64-bit

long. If you have a 48-bit prefix, you can have 65,536 networks in your LAN by choosing
the 16-bit. If you have a 64-bit prefix, you can have a single network only.

3	�This protocol is defined in RFC 4213, “Basic Transition Mechanisms for IPv6 Hosts and
Routers”.

4	�LLA stands for Link-Local Address. After ifconfig gif0 up, an LLA is automatically con-
figured. See also the last column for more details.

5	�IID stands for Interface IDentifier. The lower bits in an IPv6 address that is unique for each
host. The length is usually set to 64, but theoretically, any length equal to or shorter than
128 − (subnet prefix length) is allowed.

6	�Rules for text representation of an IPv6 address are covered in the first column. See also
RFC 5952: “A Recommendation for IPv6 Address Text Representation”.

7	The author is working on these problems, and it will hopefully fixed in near future.
8	The author is also working on these problems.
9	�MSA stands for Mail Submission Agent. This is a program to submit an email to an MTA,

Mail Transfer Agent. The sendmail program can be used as an MSA or an MTA.

HIROKI SATO is an assistant professor at Tokyo Institute of Technology. His research topics
include transistor-level integrated circuit design, analog signal processing, embedded sys-
tems, computer network, and software technology in general. He was one of the FreeBSD
core team members from 2006 to 2022, has been a FreeBSD Foundation board member
since 2008, and has hosted AsiaBSDCon, an international conference on BSD-derived oper-
ating systems in Asia, since 2007.

10 of 10

