
September/October 2022

Introduction to CARP
Refactoring the Kernel
Cryptographic Services
Framework
PAM Tricks and Tips
SSH Tips and Tricks
Pragmatic IPv6 (Part 3)

 Security
•

•

•

•

•

Nov/Dec 2019 57

November/December 2021

Open Channel SSD

Building FreeBSD Communities

27 Years with the Perfect OS

WIP/CFT:OccamBSD

2022 Editorial Calendar
• Software and System Management

(January-February)

• ARM64 is Tier 1 (March-April)

• Disaster Recovery (May-June)

• Science, Systems, and FreeBSD (July-August)

• Security (September-October)

• Observability and Metrics (November-December)

LETTER
from the Foundation

Justin Gibbs • Founder of the FreeBSD Foundation,
President and Treasurer of the FreeBSD
Foundation Board

Daichi Goto • Director at BSD Consulting Inc.
(Tokyo)

Dru Lavigne • Author of BSD Hacks and
The Best of FreeBSD Basics

Michael W Lucas Author of more than 40 books including
Absolute FreeBSD, the FreeBSD
Mastery series, and git commit murder

•

Kirk McKusick • Lead author of The Design and
Implementation book series

Hiroki Sato • Director of the FreeBSD Foundation
Board, Chair of AsiaBSDCon, and
Assistant Professor at Tokyo
Institute of Technology

Robert N. M. Watson • Director of the FreeBSD Foundation
Board, Founder of the TrustedBSD
Project, and University Senior Lecturer
at the University of Cambridge

Advisory Board
Anne Dickison • Marketing Director, FreeBSD Foundation

John Baldwin • Member of the FreeBSD Core Team and
Chair of FreeBSD Journal Editorial Board

Tom Jones • FreeBSD Developer, Internet Engineer
and Researcher at the University of
Aberdeen

Allan Jude • CTO at Klara Inc., the global FreeBSD
Professional Services and Support
company

George Neville-Neil • Past President of the FreeBSD Foundation
Board, and co-author of The Design
and Implementation of the FreeBSD
Operating System

Ed Maste • Senior Director of Technology,
FreeBSD Foundation and Member
of the FreeBSD Core Team

Benedict Reuschling • FreeBSD Documentation Committer
and Member of the FreeBSD Core Team

Mariusz Zaborski • FreeBSD Developer

FreeBSD Journal (ISBN: 978-0-615-88479-0) is published 6 times
a year (January/February, March/April, May/June, July/August,

September/October, November/December).
Published by the FreeBSD Foundation,

3980 Broadway St. STE #103-107, Boulder, CO 80304
ph: 720/207-5142 • fax: 720/222-2350
email: info@freebsdfoundation.org

Copyright © 2021 by FreeBSD Foundation. All rights reserved. This magazine may not be
reproduced in whole or in part without written permission from the publisher.

Publisher •
Editor-at-Large •

Design & Production •
Advertising Sales •

Walter Andrzejewski
walter@freebsdjournal.com

James Maurer
jmaurer@freebsdjournal.com

Reuter & Associates

Walter Andrzejewski
walter@freebsdjournal.com
Call 888/290-9469

J O U R N A L
®

S&W PUBLISHING LLC

Editorial Board

PO BOX 3757 CHAPEL HILL, NC 27515-3757

3FreeBSD Journal • September/October 2022

Welcome to the latest security
issue of the FreeBSD Journal.
As the Deputy Security Officer, I am especially inter-
ested in the security-focused issues of the Journal and
this one does not disappoint. From an Introduction
Networking Redundancy with CARP and CHERI Ports
and Packages to Tips and Tricks for PAM and SSH,
the issue provides an overview of technologies that
can help keep your system secure. Members of the
FreeBSD Security Team also sat down to talk about
how the team works and why we do what we do.

Thank you to the volunteers who serve on the
FreeBSD Security Team!

• Gordon Tetlow
• Baptiste Daroussin
• Xin Li
• Dag-Erling Smørgrav
• Glen Barber
• Ed Maste
• Mark Johnston
• Mariusz Zaborski
• Philip Paeps
As always, thanks to the FreeBSD Foundation, ac-

cess to the FreeBSD Journal is free! Don’t forget to
share with your friends and colleagues and if you’ve a
story idea for an upcoming issues, please let us know
at jmauer@freebsdjournal.com

Finally, thank you to everyone who contributed to
the latest issue. We hope you enjoy it!

Ed Maste
Senior Director of Technology, FreeBSD Foundation
and Member of the FreeBSD Core Team

mailto:jmauer@freebsdjournal.com

 3 Foundation Letter
By Ed Maste

 44 We Get Letters
Perplexed
By Michael W Lucas

 47 Book Review: Understanding Software Dynamics
 by Richard L. Sites

Reviewed by Tom Jones

 50 Interview: Keeping FreeBSD Secure
By Pam Baker and Anne Dickison

 54 Conference Report: MCH 2022
By René Ladan

 57 Events Calendar
By Anne Dickison

  Security

4FreeBSD Journal • September/October 2022

September/October 2022

 5 Introduction to CARP
 By Mariusz Zaborski

 11 Refactoring the Kernel Cryptographic
Services Framework

 By John Baldwin

 21 PAM Tricks and Tips
 By Michael W Lucas

 27 SSH Tips and Tricks
 By Benedict Reuschling

 33 Pragmatic IPv6 (Part 3)
 By Hiroki Sato

5FreeBSD Journal • September/October 2022

IntroductionCARP
High availability topics might be challenging and complicated in large networks which

is why we should look for solutions that are simple and easy to maintain and under-
stand. CARP protocol, without any doubt, is one of them. CARP stands for Common

Address Redundancy Protocol and its basic functionality is to allow multiple hosts to share a
set of IP addresses.

The CARP protocol isn’t new — it was first introduced in 2003 in OpenBSD as an alterna-
tive to CISCO protocol VRRP. CARP was to replace VRRP protocol because of patent issues,
which are beyond the scope of this article. After CARP was introduced in OpenBSD, it was
later integrated into FreeBSD and NetBSD. Finally, the ucarp was introduced — a userland
implementation of CARP protocol — which brought an alternative to kernel implementa-
tions and made it available on Linux.

CARP Background
CARP allows a redundancy group — a set of hosts that share IP addresses. However,

physically, only one interface has these IP addresses assigned (it is called the active host).
In the case where an active host disappears (e.g., it was turned off or there is some issue
with the network), other hosts in the redundancy group notice this and a new active host is
elected. This situation is shown in Figure 1. There are two machines in the redundancy group
— blue and green, but only the blue one is an active node, so other machines in the net-
work don’t have an issue choosing which to connect to.
Figure 1. Active and passive CARP nodes

192.168.0.1

Active Standby

In CARP, the active node is broadcasting its activity. This process is shown in Figure 2. Be-
cause the blue host is an active node, it is broadcasting CARP packages. The green and or-

BY MARIUSZ ZABORSKI

1 of 6

to

6FreeBSD Journal • September/October 2022

ange nodes are on standby and do not send any packages. The CARP package is quite small
and contains only minimal information like:

• vhid (Virtual server ID), the identification of the redundancy group; all machines in the
redundancy group have to share the same vhid

• Information about the CARP version and type of CARP package.
All packages in CARP are cryptographically signed, meaning each node in the redundan-

cy group has to share the secret. CARP will never send its password in plaintext to the net-
work. It is very important that every machine in the redundancy group be configured with
exactly the same set of IP addresses. These IP addresses aren’t sent over the network, how-
ever — they are used to calculate the cryptographical signature.

In the case shown in Figure 2, as long as the blue server is announcing cryptographically cor-
rectly signed packages with the given vhid, the other nodes don’t do anything and just listen.
Figure 2. Announcing CARP packages

A: 192.168.0.1

When a node stops receiving CARP packages for a while, another node decides to step
in and become an active node. This situation is shown in Figure 3. The blue node, for some
reason, stopped announcing the package, the green node noticed it, and now it has start-
ed to announce the CARP packages. When the blue node comes back, it will notice that the
green node is now an active node and it will stay passive.
Figure 3. New active node

A: 192.168.0.1

2 of 6

7FreeBSD Journal • September/October 2022

All examples above show a single IP address in the redundancy group. However, the re-
dundancy group can have multiple IP addresses, and hosts can be in multiple redundancy
groups — this is accomplished by different vhid. Thanks to that, we can also do some kind of
load balancing among services in the network. For example, the green node can be an ac-
tive node in the redundancy group, which provides the web server service, and the blue one
can be an active node in the redundancy group, which provides the time service. If one of
the nodes disappears, the other will become an active node in the other group.

CARP and Split-brain
In a situation where two nodes notice, at the same time, that the node disappeared, both

might want to become an active node. This is called a split-brain situation, where there are
multiple active nodes. This situation might also occur when the link between the nodes is
broken, and they stop seeing packages from each other and, after a while, the situation is
fixed.

The split-brain issue is shown in Figure 4. CARP also solves this situation. When both
hosts are active, both are announcing CARP packages. The node that announces more
packages in a shorter period of time is the preferred node to become a new master. This is
controlled in CARP with priority. Lower priority means packages are sent more often. When
the other node sees that the CARP packages are announced more often than it is doing, it
switches back to passive mode.

In the case when both nodes send packages with the same priority, the node will be cho-
sen randomly.
Figure 4. Split-brain situation

A: 192.168.0.1

A: 192.168.0.1

FreeBSD Kernel Module CARP Configuration
CARP module is included in the default FreeBSD installation. From FreeBSD 10.0, CARP

is no longer a pseudo-interface and it is configured directly on the interface. Listing 1 shows
a basic configuration of CARP. First, we have to load a FreeBSD CARP module, which is ac-
complished by kldload(8) command. Then using ifconfig(8), we define on which in-

3 of 6

8FreeBSD Journal • September/October 2022

terface the CARP should work (in our case it’s em0). Next, we define a redundancy group
ID (vhid is set to 1). Another important configuration is the passphrase used to calculate the
checksum; this passphrase has to be shared among all hosts in the redundancy group. In the
command, we also define the priority (or the advertisement interval). This is controlled by
two parameters: advbase (advertisement base), which is specified in seconds, and advskew
(advertisement skew — it is not shown on Listing) which is measured in 1/256 of a second.
Just as a reminder — the lower priority means the host advertises more often, which means
that it is a preferred node. Finally, we define which is the floating address.

On the same listing, we have two runs of ifconifg(8); the parts not regarding CARP
were omitted. In the first run, we can see that the redundancy group is in BACKUP state,
which means that the interface is in standby mode and listening for CARP packages. Be-
cause there are no CARP packages in the network, it is switched to the MASTER (active)
state, and the node starts to announce it. In Figure 5, we can see the captured CARP pack-
age, which is using a second static IP address for announcing the CARP packages to the
multicast IP address. So, an additional IP address besides the shared one must be config-
ured.
Listing 1. Configuration of CARP in FreeBSD

kldload carp
ifconfig em0 vhid 1 pass randompass advbase 1 alias 192.168.1.50/32
ifconfig
em0:
 inet 192.168.1.50 netmask 0xffffffff broadcast 192.168.1.50 vhid 1
 carp: BACKUP vhid 1 advbase 1 advskew 0
ifconfig
em0:
 inet 192.168.1.50 netmask 0xffffffff broadcast 192.168.1.50 vhid 1
 carp: MASTER vhid 1 advbase 1 advskew 0
 status: active

Figure 5. Captured CARP traffic using Wireshark

What might come in handy is that FreeBSD devd(8) demon allows running addition-
al scripts when the state has changed. Listing 2 shows an example of such a configuration
from the FreeBSD man page. When the redundancy group changes its state, the /root/
carpcontrol.sh script will be executed. The first parameter will be `vhid@inet,̀ and the
second parameter will be the current state of the group.

4 of 6

9FreeBSD Journal • September/October 2022

Listing 2. devd(8) configuration for CARP

notify 0 {
 match “system” “CARP”;
 match “subsystem” “[0-9]+@[0-9a-z.]+”;
 match “type” “(MASTER|BACKUP)”;
 action “/root/carpcontrol.sh $subsystem $type”;
};

ucarp
Additionally, a very promising project was a ucarp, the userland implementation of

CARP protocol. It reduced the amount of code in the kernel space. Also, in the case of ker-
nel space implementation, that might be slightly different. In this case, the code base was
shared by multiple platforms. However, the project seems to have been abandoned--the
GitHub project is closed, and the ucarp domain has expired. However, you can still find a
ucarp distributed on different operating systems, so if you are looking for cross platform
implementation, we still recommend you take a look at that project.

The configuration options are quite similar to the kernel implementations. Listing 1 shows
how to install ucarp on a FreeBSD box. The next line shows its basic usage. Most options are
self-explanatory at this point. Let’s look into the upscript and downscript options. Be-
cause the ucarp was designed as a multiplatform tool, it doesn’t know how to add an IP ad-
dress to the interface — this responsibility was moved to the administrator. The user has to
define his/her own scripts that add the IP addresses to the right interface.
Listing 3. Basic usage of ucarp

pkg install carp
ucarp --interface=eth0 --srcip=192.168.1.157 --vhid=1 --pass=randompass
--addr=192.168.1.50 --upscript=up.sh --downscript=down.sh

Another small caveat about ucarp is that we can define only one single floating IP ad-
dress for the protocol. We can add many IP addresses in the upscript and downscript;
however, only one (from parameter addr) will be added to the cryptographic signature. This
means if we would like to mix the kernel and userland CARP implementations, it won’t work
with multiple floating addresses in the single redundancy group, because the checksum
won’t match.

Summary
Carp is a simple but very powerful tool that allows us to provide high availability in our

network. There are two major CARP implementations: the kernel space (which each BSD
operating system has) and one userland ucarp which is a cross-platform (and also works on
Linux). Unfortunately, the userland implementation seems to have been abandoned. How-
ever, if you are looking for an easy and simple solution that will provide you with a floating
address, you should still consider its use.

5 of 6

10FreeBSD Journal • September/October 2022

Bibliography
• CARP on Wikipedia —

https://en.wikipedia.org/wiki/Common_Address_Redundancy_Protocol
• UCARP GitHub Project — https://github.com/jedisct1/UCarp
• CARP in FreeBSD Handbook —

https://docs.freebsd.org/en/books/handbook/advanced-networking/#carp
• CARP FreeBSD man page —

https://www.freebsd.org/cgi/man.cgi?query=carp&sektion=4

Acknowledgment
Figures in this article use resources from flaticon.com

MARIUSZ ZABORSKI currently works as a security expert at 4Prime. He has been the proud
owner of the FreeBSD commit bit since 2015. His main areas of interest are OS security and
low-level programming. In the past, Mariusz worked at Fudo Security, where he led a team de-
veloping the most advanced PAM solution in IT infrastructure. In 2018, he organized the Polish
BSD user group. In his free time, Mariusz enjoys blogging at https://oshogbo.vexillium.org.

6 of 6

all the storage; we use ZFS to replicate the data between cluster nodes; we use
compression and snapshots. And we heavily use Capsicum to make it all secure.

We want to be sure that even if someone breaks into a single session, he can-
not access other sessions. He cannot actually access anything, because if he
breaks in before authentication, he won't be granted access to connect to the
server. Only after successful authentication will we provide a connection to the
destination server.

And Capsicum makes it really clean and very efficient actually.
Al lan: You don't have to enumerate all the things you can't do. You're saying
you're only allowed to do these things?

• Pawel: Yes. This is capability ideology. You only grant the exact rights or access
to resources that the process requires. Which is not UNIX ideology because, of
course, if you are running a UNIX program, it has access to everything.
Al lan: Was there anything else you wanted to talk about?

• Pawel: Not really. •

Sept/Oct 2019 23

FreeBSD is internationally recognized as an innovative
leader in providing a high-performance, secure, and stable
operating system.
Not only is FreeBSD easy to install, but it runs a huge number

full source code.

The FreeBSD Community is proudly supported by

T

Help Create the Future.
Join the FreeBSD Project!

The FreeBSD Project is looking for

Find out more by

Checking out our website

Downloading the Software

for people like you to help continue
developing this robust operating system.
Join us!

Already involved?

Don�t forget to check out the latest
grant opportunities at
freebsdfoundation.org

https://en.wikipedia.org/wiki/Common_Address_Redundancy_Protocol
https://github.com/jedisct1/UCarp
https://docs.freebsd.org/en/books/handbook/advanced-networking/#carp
https://www.freebsd.org/cgi/man.cgi?query=carp&sektion=4
https://www.flaticon.com
https://oshogbo.vexillium.org

11FreeBSD Journal • September/October 2022

The FreeBSD kernel includes a cryptographic services framework used by other ker-
nel subsystems for data encryption and authentication. Consumers of this framework
include GELI, IPsec, kernel TLS offload, and ZFS. This framework is most common-

ly referred to by the acronym OCF. Originally, OCF stood for the OpenBSD Cryptograph-
ic Framework (https://www.openbsd.org/papers/crypt-service.pdf), but over time it has be-
come an acronym for the OpenCrypto Framework.

History of OCF
The OpenCrypto framework was first imported into FreeBSD 5.0 as a port of the

OpenBSD Cryptographic Framework by Sam Leffler in 2002. This initial version was primari-
ly focused on supporting encryption and authentication of network packets for IPsec. It
also included a character device driver, /dev/crypto, which supported custom ioctl()
commands to permit userland applications to off-
load cryptographic operations to cryptography
co-processors.

OCF supported two different modes: symmet-
ric and asymmetric. In symmetric mode, consum-
ers (such as IPsec) first created a session describ-
ing parameters such as the algorithms to use and
key lengths. Sessions were bound to crypto device
drivers (either co-processor drivers or a software
driver). Once a session was created, the consumer
could issue one or more requests against a session.
Each request performed a single operation such
as encrypting or decrypting a buffer. Consumers
explicitly destroyed a session once it was no longer
needed. Asymmetric mode, however, worked differently. Rather than using sessions, each
asymmetric operation was dispatched individually, and OCF chose a driver for each opera-
tion. Asymmetric operations were intended to assist with public-key cryptography and per-
formed arithmetic on “big-numbers” such as computing a modulus according to the
Chinese Remainder Theorem. Asymmetric operations were only used by user processes via
/dev/crypto.

BY JOHN BALDWIN

1 of 10

OCF supported two

different modes:

symmetric and

asymmetric.

Refactoring the
Kernel Cryptographic
Services Framework

https://www.openbsd.org/papers/crypt-service.pdf

12FreeBSD Journal • September/October 2022

Symmetric sessions in OCF supported cipher and digest algorithms that were contem-
porary at the time. Supported ciphers included Cipher Block Chaining (CBC) modes of
Data Encryption Standard (DES) and Triple-DES. Digest algorithms included Hash-based
Message Authentication Codes (HMAC) constructions of MD5 and SHA-1. In addition, En-
crypt-then-Authenticate (EtA) combinations of ciphers and HMACs were also supported.

Over time, a few additional algorithms were added such as SHA-2 digests and AES-XTS.
However, the largest set of changes came in FreeBSD 11.0 with the addition of AES-CTR (a
stream cipher) and AES-GCM an Authenticated Encryption with Associated Data (AEAD al-
gorithm) by John-Mark Gurney. Modern versions of TLS and IPsec prefer AEAD algorithms
and have deprecated other constructions such as EtA.

State of OCF in FreeBSD 11
During the 12.0 development cycle, I ported

two Linux crypto drivers to FreeBSD (ccr(4) and
an out-of-tree driver). This was my first experience
with OCF, and I came away feeling that the inter-
face had some quirks that resulted in extra “busy
work” in crypto device drivers.
Linked-Lists for Transforms

Symmetric cryptographic operations in OCF
are managed via sessions. OCF consumers create
sessions describing the types of operations to be
performed (algorithms to use, key sizes, etc.). In-
dividual operations are then invoked on a session
permitting drivers to cache state (such as precom-
puted key schedules) across operations. In 11.0, OCF session parameters were described by
a linked-list of structures. Each structure defined either a single data transformation (such
as symmetric encryption or compression) or a single digest computation. Sessions using a
combination of algorithms (such as EtA) used separate structures for the encryption and
authentication steps. Cryptographic operations also used a linked-list of crypto descriptors
(one for each session parameter structure) describing the range of the data buffer on which
to perform each operation as well as ancillary data such as keys and explicit Initialization
Vectors (IVs) or nonces.

OCF in 11.0 did not define a specific order for session structures (e.g., encryption before
authentication). Instead, consumers were free to construct the linked-list in an arbitrary or-
der. As a result, drivers first walked the linked-list determining if there were unsupported
combinations (e.g. multiple ciphers) as well as saving pointers to supported transforms (typi-
cally a cipher pointer and an auth pointer). Once this pass completed, drivers validated trans-
form-specific parameters such as requested algorithms and key lengths. Operation descrip-
tors were similar except that the order mattered. In particular, the cryptosoft(4) software
driver depended on iterating over each descriptor in sequence to perform the desired set of
operations. Other device drivers walked the descriptor chain validating that the chain con-
tained the right number and type of descriptors (matching the session) again saving point-
ers to specific descriptors (e.g. cipher and auth descriptors) before completing the request.

2 of 10

Over time, a few

additional algorithms

were added.

13FreeBSD Journal • September/October 2022

Working with the linked-lists was not overly difficult, but it was tedious and resulted in a
lot of code duplicated across drivers. Another common theme was that the OCF layer itself
did not perform checks that were not driver-specific (such as validating the list of operation
descriptors against the session). Instead, every driver was required to duplicate these checks.
Similarly, OCF did not perform centralized checks on session parameters such as reject-
ing requests to create sessions with invalid parameters such as a cipher session with a key
length that was not defined for the associated algorithm. These checks were instead dupli-
cated across drivers.
AEAD Support

AEAD algorithms combine both encryption and authentication in a single algorithm.
These algorithms provide similar functionality to EtA cipher suites but with a few chang-
es. Notably, AEAD algorithms use a single key and
nonce to provide both encryption and authentica-
tion. Under the covers, existing AEAD ciphers typ-
ically consist of separate encryption and authen-
tication algorithms and derive separate keys and
nonces for each from the user-supplied values. For
example, AES-GCM uses AES-CTR for its cipher.
AES-GCM is commonly used with a 12-byte nonce
which is used as the upper 12 bytes of the IV with
AES-CTR. The low 4 bytes are used as a count-
er which is incremented for each block of cipher-
text. The keysteam for block 1 is used as part of the
computation of the authentication tag and the ci-
phertext is encrypted starting with the keystream
for block 2.

In 11.0, OCF used separate session parameters
and crypto descriptors for the cipher and authenti-
cation “sides”. Consumers had to specify the same
inputs such as keys and nonces for both sides, and drivers were required to check that both
sides were consistent. In addition, due to a quirk of how some parts of OCF managed au-
thentication algorithms, separate algorithm constants were defined for each key size (128,
192, and 256 bits) for the GMAC side of AES-GCM. Again, consumers had to ensure the
GMAC constant matched the key size and drivers had to check for mismatches.

Crypto operations for AEAD in 11.0 also worked a bit differently than EtA requiring sepa-
rate AEAD vs EtA logic in drivers. For EtA, OCF assumed that authentication was performed
over a single region containing both auth-only data (such as the ESP header for IPsec) and
the ciphertext. Furthermore, it assumed that these regions of the buffer were contiguous in
the input data buffer such that they could be described by a single descriptor. This approach
worked well with cryptosoft(4)’s implementation. AEAD algorithms, however, require more
explicit separation of auth-only data (also known as Additional Associated Data (AAD)) from
the ciphertext. AEAD algorithms define the order in which AAD is input into the authenti-
cation computation relative to the ciphertext regardless of the location within the associat-
ed data buffer. Existing AEAD algorithms also include the length of the AAD and ciphertext

3 of 10

Working with the

linked-lists was not overly

difficult, but it was tedious

and resulted in a lot of

code duplicated across

drivers.

When an OCF consumer

creates a new session, the

OCF framework chooses a

driver to service requests

for the new session.

14FreeBSD Journal • September/October 2022

regions as inputs into the authentication function. To simplify the implementation of AEAD
algorithms, the authentication descriptor for AEAD operations only covered the AAD re-
gion. It was implicit that the authentication algorithm must also be executed on the cipher-
text region described by the cipher descriptor. Secondly, decryption operations for AEAD
algorithms verified the supplied authentication digest, or tag, and failed the request with an
error (EBADMSG) if it did not match. For EtA, OCF in 11.0 always computed the digest on the
input and required the caller to save a copy of the original digest and to compare against
the computed digest after the EtA operation completed.
IV/Nonce Handling

Crypto descriptors in OCF for cipher operations supported a tri-state of possible settings
for dealing with IVs or nonces. First, an IV could
either be supplied in a location in the data buffer
(such as is commonly done in EtA algorithms for
IPsec) or in a separate array in the descriptor. This
choice was indicated by a flag in the descriptor. In
the case that the IV was located in the data buffer,
the driver would generate a random IV and insert
it into the buffer for encryption operations unless
the consumer set a second flag. In practice, none
of the drivers in the tree supported generating IVs
in hardware, so every driver duplicated the same
block of code for managing IVs. This block of code
had to check for invalid combinations of flags and,
if the second flag wasn’t set, call arc4rand(9) to
generate a random IV to insert into the data buffer
prior to encryption or authentication.
Session Handles

OCF sessions were named by integer IDs in 11.0. When a driver created a new session,
it allocated a driver-private integer ID and returned it to the caller. This integer ID was sup-
plied by the session consumer for each operation associated with a session as well as when
removing a session. All existing drivers allocate driver-specific state for each session. When
an operation is performed or a session is deleted, drivers use the session’s integer ID to lo-
cate this driver-specific state. Existing drivers in the tree either used a O(n) loop to locate the
driver-specific state for each request, or they used a lock to protect access to a resizable ar-
ray of pointers.
Session Probing

When an OCF consumer creates a new session, the OCF framework chooses a driver to
service requests for the new session. In 11.0, this process was simplistic. Drivers registered
a list of algorithms supported by OCF during their initialization. When a session was creat-
ed, the framework would select a driver based on the requested algorithms. However, if the
driver failed to create a new session because it did not support one of the other parameters
(e.g., a key size, or if a device only supported standalone encryption or authentication but
not combined EtA operations), OCF would propagate that failure back to the caller. Spe-
cifically, OCF would not try to fallback to another driver. For example, if OCF initially chose

4 of 10

https://man.freebsd.org/arc4rand/9

15FreeBSD Journal • September/October 2022

a coprocessor driver that failed to handle the new session, the framework would not try to
use a software driver which could handle the new session instead.

Streamlining OCF for Drivers and Consumers
As a driver author, OCF felt a bit clunky and required a fair amount of duplicated code

among drivers. Some of this duplication was due to flexibility that did not seem needed. For
example, using linked-lists for session parameters and operation descriptors permitted an
arbitrary number and order of transformations. In practice, however, the operations used ei-
ther required a single operation at a time, or a combination of one cipher and one authen-
ticator such as EtA. On the other hand, OCF did not include flexibility that would be useful
for some use cases. For example, KTLS did not always perform in-place encryption. To cater
to OCF in 11 assuming in-place encryption, KTLS support via OCF had to copy the data into
the output buffer before handing the data off to a crypto driver. KTLS also does not store
its AAD inline in the on-wire format, but instead
combines metadata about each TLS record along
with some on-wire data from the TLS record to
form the AAD.

To make OCF easier to work with, OCF has
been refactored in the past couple of years. The
primary goal of this refactoring has been to im-
prove ease of use for driver authors. Improving
performance is a secondary goal, and it is hoped
that reducing complexity will have that benefit
by leading to simpler drivers. All the changes de-
scribed below shipped in FreeBSD 13.0, though the
first change was made in 12.0.
Opaque Session Handles

The first refactoring was implemented in
FreeBSD 12.0 by Conrad Meyer. Conrad replaced
the integer session IDs used as a handle for OCF
sessions with a new crypto_session_t opaque type. Under the hood these handles hold
a pointer to a per-session structure allocated by the OCF framework. This per-session struc-
ture contains memory reserved for driver-specific session state. Drivers now provide the
desired size for their driver-specific session state when registering with OCF. Before OCF
asks a driver to initialize a new session, OCF allocates memory for the driver-specific session
state. Drivers can obtain a pointer to this per-session state at any time via crypto_driver_
session() as a cheap, O(1) operation. When a session is freed, OCF zeroes and frees this
driver-private structure as well. This removes the need for drivers to manage the lifecycle of
driver-specific session structures using a model similar to that of device_get_softc() in
new-bus.
Session Parameters

FreeBSD 13.0 introduced a new flat structure to describe symmetric cryptography ses-
sions. This structure (struct crypto_session_params documented in crypto_ses-
sion(9)) replaced the linked list of session structures and includes parameters such as key,

5 of 10

As a driver author,

OCF felt a bit clunky

and required a fair amount

of duplicated code among

drivers.

https://man.freebsd.org/crypto_session/9
https://man.freebsd.org/crypto_session/9

16FreeBSD Journal • September/October 2022

digest, and nonce lengths, session-wide keys, and a mode. Supported modes include stand-
alone compression, encryption, and authentication as well as EtA and AEAD modes that
combine both encryption and authentication. For device drivers the loop iterating over the
linked list of session structures checking for multiple ciphers as well as identifying the cipher
vs authentication structures has been removed. Instead, drivers can use switch statements
on the mode and algorithm-specific fields (such as csp_cipher_algorithm and csp_
auth_algorithm) to validate session structures and determine if a session is supported.

The parameter structure also includes room for future expansion. Including an explicit
mode permits future combinations such as TLS’s Mac-then-Encrypt (MtE) to be implement-
ed if desired. In addition, the parameter structure includes a flags field to request optional
features. During the initial conversion of drivers, all drivers were updated to reject sessions
with a non-zero flags field. As new feature flags are added, drivers can opt-in to supporting
sessions with those features by relaxing the checks on the flags field. If at least one driver
supports each new feature that is added, this al-
lows consumers to use new features without re-
quiring changes in all crypto drivers. In practice this
means that new optional features must be sup-
ported by the cryptosoft(4) driver.
Session Probing

FreeBSD 13.0 also introduced a new crypto driv-
er method, cryptodev_probesession. When a
new symmetric session is created, OCF invokes this
new method on each eligible driver. Drivers can ex-
amine all the session parameters including the ses-
sion mode and key lengths to determine if an indi-
vidual session is supported. If a driver supports a session, it returns a bidding value from this
method that OCF uses to choose the best-suited driver. Bidding values are similar to those
used by DEVICE_PROBE(9) where a positive value indicates an error and the negative value
closest to zero is considered the “best” driver. Unlike DEVICE_PROBE(9), there are no special
semantics for a return value of zero. Three bidding values are currently defined for coproces-
sor drivers, accelerated software drivers (such as aesni(4)), and plain software drivers.

Previously OCF did not provide a good way of distinguishing accelerated software drivers
from coprocessor and plain software drivers. Prior to 13.0, accelerated software drivers were
marked as coprocessor (“hardware”) drivers to ensure they were preferred to plain software
drivers. However, this also meant that userland requests submitted via /dev/crypto were
enabled for accelerated software drivers by default. If userland software such as OpenSSL is
going to use accelerated software instructions (such as AES-NI on x86), it is more efficient
for userland to use those instructions directly rather than paying the additional overhead
of system calls to encrypt or decrypt data. Userland requests via /dev/crypto only make
sense when using a coprocessor (and even for many smaller requests the system call
overhead can still outweigh the benefits of offloading operations to a coprocessor). The
cryptodev_probesession hook provides preference for accelerated software drivers
while avoiding conflating them with coprocessor drivers.

6 of 10

The parameter structure

also includes room

for future expansion.

https://man.freebsd.org/DEVICE_PROBE/9
https://man.freebsd.org/aesni/4

17FreeBSD Journal • September/October 2022

Crypto Requests
FreeBSD 13.0 features a flattened crypto request structure (struct cryptop described

in crypto_request(9)). This structure existed in older FreeBSD versions, but it no longer con-
tains a pointer to a linked-list of descriptors. Instead, the information previously stored in de-
scriptors such as the size and layout of regions in the data buffer such as AAD and payload
are now described by members of the structure. Pointers to per-operation keys and sepa-
rate IVs are stored directly in the structure as well. The new members in the structure as-
sume that symmetric requests operate on a buffer containing AAD, IV, payload, and MAC
regions. (Note that some regions are optional depending on the session parameters and
request flags.) EtA modes are expected to apply authentication on both the AAD and en-
crypted payload regions while AEAD modes treat the AAD and payload regions as defined
by the associated algorithm.

IV/nonce handling for requests has also been simplified. The OCF layer now generates
any random nonces requested by a consumer be-
fore passing a request down to drivers. Drivers now
only have to determine if the IV is stored inline in
the data buffer or as a separate input in the re-
quest structure. A new helper function, crypto_
read_iv(), permits drivers to fetch the IV from a
request into a local buffer. This function eliminated
duplicated code to read the IV from a request in al-
most all drivers.
Crypto Buffers

FreeBSD 13.0 added additional abstractions for
buffers holding data used as inputs and outputs
of symmetric cryptographic requests. Prior to 13.0,
crypto requests supported different types of data buffers including flat kernel buffers and
struct mbuf chains. The type of buffer was encoded via flags in the crp_flags field of
struct cryptop and an overloaded pointer pointed to the backing store. Two helper rou-
tines for moving data in and out of a crypto request’s data buffer (crypto_copydata()
and crypto_copyback()) accepted the flags field and overloaded pointer as arguments to
support different data buffer types.

13.0 adds a new struct crypto_buffer type to describe a crypto data buffer. The
structure includes an enum member which defines the type of the buffer as well as a union
of type-specific fields. This permits buffer types which require more than a single pointer to
describe. Using a dedicated type also permitted adding support for separate input and out-
put buffers by storing two structures in struct cryptop. The existing crypto_copyda-
ta() and crypto_copyback() routines now accept the crypto request in place of the indi-
vidual fields.

Two new API extensions further reduce duplicated code in drivers. First, new bus_dma(9)
functions, bus_dmamap_load_crp() and bus_dmamap_load_crp_buffer(), permit
loading a mapping for a crypto data buffer associated with a crypto request. This is primarily
useful for coprocessor drivers which need to construct a DMA scatter/gather list to pass on
to the coprocessor. Second, a cursor abstraction, primarily useful for software drivers, allows

IV/nonce handling

for requests has also

been simplified.

7 of 10

https://man.freebsd.org/crypto_request/9
https://man.freebsd.org/bus_dma/9

18FreeBSD Journal • September/October 2022

drivers to iterate over virtual address ranges of a crypto data buffer. Cursors are bound to a
crypto buffer when initialized. Drivers can then iterate over a data buffer either by copying
data, which implicitly advances the cursor, or explicitly seeking forward. Logic specific to in-
dividual data buffer types is isolated in the implementation of crypto cursors rather than du-
plicated in software drivers. More details on the crypto cursor API can be found in crypto_
buffer(9). These extensions permit adding new data buffer types without modifying most
existing drivers.

Finally, new helper routines have been added on
the consumer side of the OCF API that are used
to initialize the data buffer in a crypto request.
Each crypto buffer data type has dedicated
crypto_use_*() and crypto_use_output_*()
routines that initialize a crypto request’s data buf-
fers. For example, crypto_use_buf() configures
a crypto request to use a flat kernel data buffer as
its input buffer. If a consumer does not specify a
separate output buffer via one of crypto_use_
output_*(), then the same data buffer is modi-
fied in place as both the input and output buffer.
Semantics Changes

Along with these structural changes, OCF in
13.0 also enforces several semantic changes. Some
of these changes fall out from the structural changes while others are intentional towards
the goal of simplifying drivers.

1. Sessions can now use at most one cipher and one authentication algorithm.
2. Sessions can only combine multiple algorithms in specific modes. For example, a ses-

sion cannot mix compression and encryption.
3. Sessions can either use per-operation or per-session keys but not both.
4. Sessions which use per-operation keys instead of per-session keys must use the same

key lengths for all operations.
5. AEAD sessions now use a single algorithm constant and key.
6. EtA sessions now validate checksums and fail operations with a bad MAC with

EBADMSG similar to AEAD sessions.
7. Accelerated software drivers such as aesni(4) are now marked as software drivers in-

stead of hardware drivers.
Existing consumers generally required only modest changes. Primarily these consisted

of coping with structural changes such as using the session parameters structure. The only
change that did not fall into this category was the change to validate MACs for EtA sessions.
However, this generally simplified consumers by aligning code paths between AEAD and
EtA sessions.
Driver Testing

The initial import of OCF included limited support for validating crypto drivers. The
tools/tools/crypto subdirectory contained several utilities. Most of these fetched sta-
tistics for specific drivers or subsystems. One utility, cryptotest.c, did support some testing,

Finally, new helper

routines have been

added on the consumer

side of the OCF API.

8 of 10

https://man.freebsd.org/crypto_buffer/9
https://man.freebsd.org/crypto_buffer/9

9 of 10

19FreeBSD Journal • September/October 2022

but it was primarily focused on measuring performance. For encryption algorithms it both
encrypted and decrypted a random buffer and verified that the decryption result matched
the original plaintext. However, it did not verify if the encrypted message matched a known-
good standard. Similarly, for authentication algorithms this tool did no verification at all. It
simply measured the performance of performing N operations.

Along with the changes to support AES-CTR and AES-GCM in 11.0, John-Mark Gurney
added support for validating drivers against a set of Known Answer Tests (KAT) published by
the National Institute of Standards and Technology. The test vectors can be installed via the
security/nist-kat port or package. The test/sys/opencrypto/crypotest.py script is able
to run these tests against crypto drivers and report any failures.

These two tests did have a few limitations. Both
tests only supported a subset of algorithms sup-
ported by OCF. The KAT tests were an improve-
ment over cryptotest.c since they validated encryp-
tion results against a trusted third party. However,
the error reporting from the KAT tests was not
detailed, and it was not easy to run an individual
test against a driver when investigating a mismatch
rather than the full battery of tests.

13.0 adds a new testing utility: tools/tools/
crypto/cryptocheck.c. This utility uses
OpenSSL’s software cryptography as a gold stan-
dard to compare driver output against. This per-
mits testing a broader range of algorithms. The
cryptocheck utility also permits testing either indi-
vidual operations or a set of operations spanning
different sizes and/or algorithms. While the pa-
rameters such as keys and data buffers are popu-
lated with random data for each test, the userland
RNG is not seeded so that the specific data inputs
for individual tests are repeatable across multiple runs. Various parameters can be specified
for tests including the sizes of plaintext buffers, keys, AAD, nonces, and MACs. For EtA and
AEAD algorithms, cryptocheck also verifies that corrupted encryption buffers are detected
and rejected with an error.
Documentation

The existing crypto(9) manual page has been updated and split into several pages. cryp-
to_session(9) describes the session parameter structure and APIs to create and manage
symmetric sessions. crypto_request(9) describes the symmetric crypto request structure
and related APIs. crypto_buffer(9) describes crypto buffer cursors and other APIs that work
on crypto request data buffers. crypto_driver(9) describes APIs for use by crypto drivers that
are not described in one of the other pages. The crypto(7) page has been reformatted as
a list of tables grouped by algorithm type and extended to cover all of the algorithms sup-
ported by OCF.

Various parameters

can be specified for tests

including the sizes of

plaintext buffers, keys,

AAD, nonces, and MACs.

https://www.nist.gov
https://www.freshports.org/security/nist-kat
https://man.freebsd.org/crypto/9
https://man.freebsd.org/crypto_driver/9
https://man.freebsd.org/crypto/7

10 of 10

20FreeBSD Journal • September/October 2022

Subsequent Changes
The set of changes above in 13.0 were authored by myself and mostly landed as a single

commit. Since then, OCF has been further extended by various developers.
Alan Somers added a new type of crypto data buffer that contains a list of VM pages.

This permitted the use of unmapped I/O with GELI which improved performance by elimi-
nating page table and TLB maintenance operations. Due to the abstractions around crypto
data buffers, Alan’s changes only touched a small number of crypto drivers directly. Most
drivers worked with the new buffer type without requiring any changes.

I added support for separate output buffers and separate AAD buffers as new session
feature flags. These improve the performance for kernel TLS by removing the need for
data copies and for allocating temporary I/O vec-
tors (struct iovec arrays). Since these requests
were added as optional features, only drivers which
wished to support kernel TLS needed to be updat-
ed to support these features.

Marcin Wojtas from Semihalf added anoth-
er session feature to support extended sequence
numbers (ESN) in IPsec for non-AEAD ciphers.

Support for additional AEAD ciphers have also
been added. AES-CCM (used by OpenZFS) was in-
cluded in 13.0. ChaCha20-Poly1305 (used by TLS
and WireGuard) shipped in 13.1.

13.0 also removes support for older, deprecated
ciphers and authenticators such as DES, TripleDES,
Blowfish, and MD5-HMAC.

Conclusion
OCF still has lots of room for improvement, but the refactoring in 13.0 has succeeded

in streamlining the API reducing code duplication and “busy” work in both drivers and con-
sumers. (Mark Johnston told me that two OCF drivers he added in 13.0 were much easier
to write due to the refactoring.) The changes sufficiently improved performance to permit
kernel TLS to switch to using OCF instead of a private software crypto interface. The refac-
toring also provided a flexible base upon which other developers have been able to extend. I
wish to thank Chelsio Communications and Netflix for sponsoring my OCF work in 13.0.

JOHN BALDWIN is a systems software developer. He has directly committed changes to
the FreeBSD operating system for over twenty years across various parts of the kernel (in-
cluding x86 platform support, SMP, various device drivers, and the virtual memory subsys-
tem) and userspace programs. In addition to writing code, John has served on the FreeBSD
core and release engineering teams. He has also contributed to the GDB debugger. John
lives in Concord, California with his wife, Kimberly, and three children: Janelle, Evan, and Bella.

OCF still has lots of

room for improvement,

but the refactoring in

13.0 has succeeded in

streamlining the API.

https://cgit.freebsd.org/src/commit?id=c03414326909ed7a740be3ba63fbbef01fe513a8
https://cgit.freebsd.org/src/commit/?id=e6f6d0c9bcbf7942c390f65062054ec4784ce5b8
https://cgit.freebsd.org/src/commit/?id=9c0e3d3a534c3e3e7f6bfce0a150ed2a0841685a
https://cgit.freebsd.org/src/commit/?id=7e89ae49db749715b17ae2358cc60b6e74fed69f
https://cgit.freebsd.org/src/commit/?id=7e89ae49db749715b17ae2358cc60b6e74fed69f

21FreeBSD Journal • September/October 2022

P luggable Authentication Modules (PAM) are perhaps the least well understood,
yet most broadly deployed part of FreeBSD. Every FreeBSD system uses PAM, via
the OpenPAM suite. Most sysadmins don’t touch it. If they have no choice but to

change it, they follow cryptic online posts that look vaguely sensible. PAM is simpler than it
looks, but its simplicity lets you accidentally achieve complexity. The big trick with PAM is to
not do that.

In this article we’ll look at PAM’s components and configurations, help you avoid a few
common mistakes, and figure out how to debug your mistakes.

What Is PAM?
Everybody agrees that usernames and passwords are not a great system of authentica-

tion. Nobody agrees on what should replace them. Different environments have different
needs. Maybe you need Kerberos, or LDAP, or SSH certificates. Perhaps you authenticate
sysadmins with hardware DNA scanners, or with
bite guards molded to individual dental patterns.
Each possible authentication method needs its
own code.

You could try to compile every program to sup-
port every possible authentication method, but
that leads to unsustainable code growth.

Or you could build a compatible shared library
for each authentication method, and load that li-
brary only if you want to use that method. That’s
the “pluggable” part. Each library is an “authentica-
tion module,” or just “module.”

FreeBSD’s OpenPAM, like primordial Solaris
PAM, handles only authentication and authentica-
tion-related tasks. If you ever work with Linux, you’ll
see that the Linux-PAM developers decided that
standard PAM was insufficiently complex and wedged other functions into their authentica-
tion stack. The features and tools found in OpenPAM work in most any PAM stack.

PAM Configuration
Configure PAM for FreeBSD’s base system in /etc/pam.d, and PAM for packages in

/usr/local/etc/pam.d. Each daemon has its own configuration file, named after the pro-

BY MICHAEL W LUCAS

1 of 6

PAM Tricks
and Tips

PAM is simpler than it

looks, but its simplicity

lets you accidentally

achieve complexity.

22FreeBSD Journal • September/October 2022

gram, that defines the PAM policy. Go look at the configuration for sshd(8), /etc/pam.d/
sshd. You’ll find a bunch of lines like this.

auth sufficient pam_opie.so no_warn no_fake_prompts
auth requisite pam_opieaccess.so no_warn allow_local
auth required pam_unix.so no_warn try_first_pass
…

Each line is one PAM rule. Each rule has four components: the type, the control, the
module, and the module arguments. The first statement here has the type auth, the con-
trol sufficient, the module pam_opie.so, and the options no_warn and no_fake_
prompts.

Rule Types
Authentication isn’t only about the user credentials. The system must also check whether

the access is permitted, provide resources for the user, and permit management of the au-
thentication system itself. That’s where the type statement comes in.

The auth type verifies the user’s authentication information and sets resource limits. If
you fat-finger your password or give a non-existent username, an auth rule kicks you out.
The auth rules also establish limits like a maximum number of processes or amount of
memory. We’ve seen auth rules above.

The account type controls access based on restrictions other than the user’s authenti-
cation. If a user tries to log in out-of-hours, an ac-
count rule blocks that access.

The session type handles server-side setup.
A command-line user needs a virtual terminal, a
home directory, and probably a log entry saying
they logged in. An anonymous FTP user should
not get a virtual terminal and is limited to a particu-
lar directory. Session rules handle all this.

Finally, the password type handles authentica-
tion updates. Forced password changes are pass-
word rules.

Controls
You’ve seen access control lists in firewalls and

server configurations. PAM rules are similar to ac-
cess control lists. Each module can either reject,
fail, or express “no opinion” on an authentication request. The control statement tells PAM
how to process each module’s decision. PAM has four common control statements: re-
quired, requisite, optional, and sufficient.

The required control means that this module must return success for the policy to per-
mit access. If this module succeeds, the user gets access unless a later rule blocks it. PAM
continues processing rules even after a required control fails.

A requisite control is much like a required control, but if an authentication module fails

2 of 6

Authentication isn’t only

about the user credentials.

PAM Tricks
and Tips

23FreeBSD Journal • September/October 2022

rule processing stops immediately. This can leak information about why authentication
failed.

Optional controls are used to support add-on functions like SSH agents or Kerberos.
They can permit or deny access if and only if no other module rejects or accepts the ses-
sion. You can use optional controls for features like adding time between a failed authenti-
cation attempt and the next attempt.

The sufficient control means that if this module succeeds and no previous required con-
trols failed, the user gets access immediately. Rule processing stops. If the control fails, PAM
does not deny access.

Modules and Arguments
PAM modules are shared libraries that imple-

ment specific authentication functionality. Pass-
words are a module. Checking LDAP is a module.
Poking your SSH agent is a module. To understand
a PAM policy, you need to know what each module
does. Every OpenPAM module, and most add-on
modules, have a man page. The first time you de-
cipher a PAM policy, you’ll read a whole bunch of
man pages.

Each module can also have arguments. While
each module can have its own arguments to han-
dle its particular needs, most also accept a handful
of common arguments. The debug flag logs extra
information, to hopefully give you a chance to figure out why authentication isn’t working as
expected. The no_warn flag silences any user feedback on why the authentication request
was rejected.

Password handling gets two special arguments, try_first_pass and use_first_pass. The
try_first_pass option reuses any password the user already entered, but if that doesn’t work,
the module may prompt for another password. The use_first_pass option declares that the
module should use the password that was already entered, and if that doesn’t work, reject
the request.

Reading A Policy
Let’s consider the sshd(8) sample rules again. These are auth rules, so they involve ac-

cepting or rejecting login credentials. Consider the first rule.

auth sufficient pam_opie.so no_warn no_fake_prompts

This rule is sufficient. If the module succeeds, the authentication request is granted, and
rule processing stops immediately.

The module is pam_opie.so. The man page pam_opie(8) tells us this supports OPIE.
You’ll need to do a little more research to see that OPIE is One-time Passwords In Ev-
erything. This rule declares that if someone authenticates with OPIE, they get access
immediately.

3 of 6

PAM modules are shared

libraries that implement

specific authentication

functionality.

PAM Tricks
and Tips

24FreeBSD Journal • September/October 2022

auth requisite pam_opieaccess.so no_warn allow_local

This rule is requisite. If it fails, processing stops immediately. That seems… harsh?
This rule is for another OPIE module, pam_opieaccess. If the OPIE users were imme-

diately granted access in the previous rule, why do we have another OPIE rule? A check of
pam_opieaccess(8) reveals that this module checks to see if a user is configured to re-
quire OPIE. A user that requires OPIE, who correctly enters their OPIE information, should
never hit this rule. They should be booted out.

Now look at the third rule.

auth required pam_unix.so no_warn try_first_pass

This is a required rule. A user who gets this far down must succeed with this module or
be denied access.

The pam_unix(8) module checks the password
file. It’s the standard username and password au-
thentication. So, this policy can be summarized as:

• If a user succeeds at OPIE, immediately let
them in. Otherwise, keep going.

• If a user requires OPIE, reject them. A OPIE
user with the right password will never get
here.

• If the user enters a correct username and
password, let them in.

Most accounts don’t require OPIE, so we fall
straight through to the password file.

That’s very skimpy. What about users with inval-
id shells, or who have a shell of nologin(8)? What
about users who aren’t allowed to log in right now?
Those are account rules, not auth rules. If you
check /etc/pam.d/sshd, you’ll see a section of account rules specifically checking user ac-
cess.

Adding Authentication Methods
People most often stumble into PAM when their organization starts requiring two-fac-

tor authentication. Maybe that’s Google Authenticator, or a Yubikey, or Cisco’s Duo. Perhaps
you have specialized authentication hardware than reads voiceprints or fingerprints or aro-
maprints. We’ll use the last three to build some less common authentication rules. Here’s
a fairly straightforward one. I haven’t read the documentation for any of these nonexistent
modules, so I’m going to ignore the options.

auth required pam_voice.so
auth required pam_finger.so
auth required pam_aroma.so

PAM Tricks
and Tips

Most accounts don’t

require OPIE, so we fall

straight through

to the password file.

4 of 6

25FreeBSD Journal • September/October 2022

All three policies are required. The user must submit a correct voiceprint and fingerprint,
plus they must smell right, to authenticate.

auth required pam_voice.so
auth requisite pam_finger.so
auth required pam_aroma.so

The middle policy, for pam_finger.so, is requisite. If this policy fails, checking immedi-
ately stops and the application is informed of the failure. Performing aroma analysis is ex-
pensive, and we don’t want to waste resources.

Perhaps you want to allow the user a choice of what authentication method to use.

auth sufficient pam_voice.so
auth sufficient pam_finger.so
auth required pam_aroma.so

Here, our first two authentication methods are sufficient. The user can use a voiceprint
or a fingerprint. If those fail, the user must submit their stink. I could also make the last rule
sufficient, but if the policy ends here, I’d want to add another rule invoking pam_deny.so to
explicitly reject authentication.

PAM Debugging
Your carefully tuned policy doesn’t work? Too bad. PAM provides very little explicit de-

bugging. Your three choices are the debug argument, pam_echo, and pam_exec.
Many modules support a debug argument. This might feed debugging to the user. It

could dump debugging to a log file. It could do nothing discernible. Modules ignore unsup-
ported arguments, so adding debug arguments throughout your policy won’t break PAM
any worse.

The pam_echo(8) module takes a string of text as an argument. The string gets passed
back to the user. These rules are always of type optional. Let’s add some echo debugging to
one of our experimental policies.

auth optional pam_echo.so “auth policy starting, trying voice”
auth sufficient pam_voice.so
auth optional pam_echo.so “voice failed, trying finger”
auth sufficient pam_finger.so
auth optional pam_echo.so “finger failed, taking a whiff”
auth required pam_aroma.so
auth optional pam_echo.so “how did we get here?”

If you think this looks like scattering printf() calls through your code, you’d be right. It
was good enough for Sun in the 1990s so it’s good enough for you.

If the program feeds the output back to the user, they’ll get the debugging statements in
their terminal.

PAM Tricks
and Tips

5 of 6

26FreeBSD Journal • September/October 2022

If the debug arguments don’t provide useful information, and the program doesn’t echo
debugging output back to the user, then you get to get complicated with pam_exec(8).
The pam_exec module runs arbitrary commands for you. Yes, this means you could write a
Perl script that checks user credentials against a Microsoft Excel spreadsheet over the net-
work, but I hope you don’t hate yourself that much. Most of the time, pam_exec is a way for
intruders to mess with your authentication, but it’s perfectly suited for calling a small shell
script. Like this.

auth optional pam_exec.so /usr/sbin/pamdebug.sh pam_voice
auth sufficient pam_voice.so
auth optional pam_exec.so /usr/sbin/pamdebug.sh pam_finger
auth sufficient pam_finger.so
auth optional pam_exec.so /usr/sbin/pamdebug.sh pam_aroma
auth required pam_aroma.so
auth optional pam_exec.so /usr/sbin/pamdebug.sh impossible_end_of_pam_rule

The script itself is very simple.

#!/bin/sh
logger “process $PPID calling $1”

This logs the process ID and what stage of the authentication you’re at. You wouldn’t
want to run this in a busy production environment where people are constantly logging on
and off, but it makes debugging on a test system simple.

PAM has many more features and options than I can cover in this simple article, but
hopefully you’ve gotten a decent idea of just how you can muck with your rules and fine-
tune authentication to annoy your users in the exact manner desired.

Good luck.

MICHAEL W LUCAS is the author of Absolute FreeBSD, FreeBSD Mastery: Jails, and forty-
eight other books. One of them was (drum roll please) PAM Mastery. Learn more at https://
mwl.io.

PAM Tricks
and Tips

6 of 6

https://mwl.io
https://mwl.io

27FreeBSD Journal • September/October 2022

SSH is a multipurpose tool used by pretty much anyone running and administering a
Unix machine, logging in from one to the next more often than not. Secure, en-

crypted logins as SSH’s core functionality are a great day-to-day help, but the daemon can
do much more. Plenty of use cases are possible and I will only describe the ones that I use,
which is by no means a complete list. I’ll start with some basic hardening options and then
move on to more sophisticated uses.

Login Options
SSH users that want to log into a system should use SSH keys instead of the keyboard-in-

teractive authentication. Ideally, the latter authentication method (showing a password
prompt) should be completely disabled to prevent any password script kiddie from constantly
trying to break into poorly secured systems with weak user passwords. On some systems that
I run for less tech-savvy users (I tried educating them on ssh keys, but to no avail), I still have to
enable it. However sad this may be, I can still lock
down the system to limit logins to a certain group
of users and force some users to not use the key-
board-interactive method. Let’s look at these one
by one.

The SSH daemon is configured by the configu-
ration file /etc/ssh/sshd_config. You can
limit the users who are able to log in with the
AllowUsers or AllowGroups directive. Even if a
local user tries to log in and provides the correct
password, as long as they are not listed in those
directives, the login is still denied. In my use case,
all the non-tech savvy usernames start with “abc”,
followed by their individual user ID. We can use
wildcards to match on this username like this:

AllowUsers abc*

Use sshd -t or even -T (for more tests) to check the validity of the sshd_config file be-
fore you restart the daemon to make these changes take effect. This line excludes the script
kiddies from trying usernames like root, admin, and such. It’s not completely secure but adds
an extra hurdle to overcome. The AllowGroups directive does the same for a group of users.

BY BENEDICT REUSCHLING

SSH Tips and Tricks
PRACTICAL

SSH users that want to
log into a system should
use SSH keys instead of
the keyboard-interactive
authentication.

1 of 6

PRACTICAL

28FreeBSD Journal • September/October 2022

User groups are easier to manage at a central location. Your new colleagues will certainly ap-
preciate getting access immediately without having to visit your office first and beg to be let
into that server. If they’re added to the group, they can log in right away. Otherwise, you have
to modify the AllowUsers line each time. The same is true when someone leaves, so do
yourself a favor and use groups so as not to spend the rest of your days managing SSH access
to a system that the whole company logs into.

Denying logins for certain users or even groups is possible with the DenyUsers or
DenyGroups command, respectively. April Fools jokes aside, this is useful for restricting cer-
tain users in a group from accessing the system until they’ve returned the only existing keys
to the server room (or are back from their vacations). The following order of directives is used
when processing a mixture of such entries: DenyUsers, AllowUsers, DenyGroups, and then
AllowGroups.

Restricting individual users’ login methods is
also possible using a match statement. This is
comparable in function to an if statement and
when such a match occurs, they override the
global settings of sshd_config. Other match
lines further down the file could undo settings
made in previous match blocks, but let’s keep this
example simple for now.

The system described above where both key-
board-interactive and public key are used is mon-
itored by a special user called monitoring. It peri-
odically logs in with its own special SSH key, runs
certain checks (disk full?), and reports the results
back to the central monitoring server. This user
should not be allowed to log in via the keyboard,
since compromising this user would basically
mean root access as some of the checks run with elevated privileges. That is why we tell the
SSH server to only allow public key authentication when this user logs in. The match state-
ment looks like this:

Match User monitoring
 AuthenticationMethods publickey

Other users still use the global settings, but once the monitoring user comes along, the
AuthenticationMethods setting gets overridden for this case. Other criteria for a match state-
ment are Group, Host, LocalAddress, LocalPort, RDomain (the routing domain), and Address.
Be careful here not to trust certain networks a user pretends to come from as this may be
spoofed or rerouted. Find something that matches as little as possible to avoid long process-
ing times or matching too many items, defeating the purpose of matching.

Note that not all keywords from sshd_config are changeable in a match statement, but
many of them are. A full list is available in sshd_config(5). Happy matchmaking!

2 of 6

Restricting individual
users’ login methods
is also possible using
a match statement.

PRACTICAL

29FreeBSD Journal • September/October 2022

Disconnecting Hung SSH Sessions
Has the following ever happened to you? You are logged in remotely on a server — doing

some work — when suddenly your terminal freezes and you can’t send any more commands
to it? Or, you closed the lid of your laptop and opened it again at a different network location
and can’t get back to the session leaving you stuck at the terminal? I imagine you nodding in
agreement, so here’s why: it is because the server did not notice the network interrupt that
may have happened and can’t re-establish the connection. If this annoys you, check out the
net/mosh package and see if that helps you.

How do you get the frozen shell back or at least properly disconnect? Even though it seems
that there is no more communication happening between your SSH client and the server,
there are still special commands that the server understands. Enter the following sequence of
commands on the frozen terminal:

Enter ~ .

This sends a special interrupt command causing the server to immediately disconnect the
session, returning control to your local shell session. Try it on a live session by hitting Enter, the
tilde character followed by the dot. Be quick about it. Once it works, you’ll quickly memorize
this as a good practice if only to impress your co-workers with your knowledge.

Other sequences are documented in the ESCAPE CHARACTERS section of ssh(1). Typ-
ing the sequence Enter, ~, and ? displays a list of escape sequences. Note that not all are sup-
ported by each SSH daemon, but in my experience, the disconnect works reliably.

The Hidden Login Script
Did you know that you can run a script each time a user successfully logs into a system via

SSH? The file /etc/ssh/sshrc that does this magic does not exist by default. When it is cre-
ated and made executable, the SSH daemon will execute the commands listed in it. This hap-
pens after the environment files are read and right before the user’s shell (or a command) is
started.

Why would that be useful, you ask? It allows for custom initialization routines to run for this
user. For example, a shell script could use the user’s name for log in (available as $USER) and
ensure access permissions and ownership on the home directory are still restricted to that
user. An error is echoed to stderr if the home directory does not exist for some reason. A
simple script that does this may look like the following:

#!/bin/sh

HOMEDIR=”/home/${USER}”

Restore restrictive home directory permissions
if [-d ${HOMEDIR}]; then
 chmod 0700 ${HOMEDIR}
 chown ${USER}: ${HOMEDIR}
else

3 of 6

PRACTICAL

30FreeBSD Journal • September/October 2022

 echo “Home directory ${HOMEDIR} does not exist” >&2
fi

Make sure the file is executable just like any other shell script to activate it the next time
someone logs in. Other environment variables are available to use as well. Note that this runs
every time a user logs in — even for file transfers via scp/sftp. Don’t put in complicated code
that takes a while to execute or the user will have to wait to finish the login process. For sneaky,
behind-the-scenes actions, this is a good way as every user who successfully logs has to pass
through the script.

Cheap, Yet Effective VPN
Virtual private networks have sprung up as paid services. They allow a secure connection

between endpoints by tunneling the traffic and encrypting it over the internet. This helped
people stay connected with the office during the
pandemic, and even before that, when support
personnel had to fix a server at ungodly hours
of the day to prevent business interruptions. For
Josephine random person, the aforementioned
paid services enabled them to buy things cheaper
by faking their origin connection to come from a
different country. This could range from airplane
tickets to as yet unreleased episodes of your fa-
vorite show on your favorite streaming service.
While this may not yield success in all cases, it is
nevertheless a convenient service to use.

How (and when) does SSH come into play?
Well, each time we are on an untrusted, unen-
crypted network and we don’t want prying eyes
reading our traffic. This is often the case at train
stations, airports, hotels, and libraries that offer free public WIFI. The connections there are of-
ten not (or not well) encrypted and shared between many different users--a perfect use case
for an SSH-based VPN solution. It does not cost us anything since we have all the tools avail-
able. All that is needed is a publicly available host reachable on the internet that you can legiti-
mately log in to.

Instead of directly connecting from our origin host O to the destination host D, we let our
traffic take a little detour via host P. This takes care of giving the network packets a different
origin address. Instead of your original host O, the packets will all be fetched by host P and for-
warded to you via a SOCKS proxy. The destination D will communicate with host P, handling
all requests, and each answer or result sent to P is forwarded to O in return. The SOCKS proxy
will allow your browser to send and receive the packets, just like you’d browse a normal web
page directly. It may be a bit slower than you are normally used to — because of the redirec-
tions between you and host P (the proxy) — but this is worth it to hide our origin address and
the extra encryption you’ll get — for free.

4 of 6

Virtual private networks
have sprung up as paid
services.

PRACTICAL

31FreeBSD Journal • September/October 2022

Here’s How To Do It
Open a new terminal and type in the following, replacing the sshproxyhost.example.com

with your SSH host the internet:

$ ssh -vD8080 -fCN sshproxyhost.example.com

This looks complicated, so let’s explain each of the options provided:
• v: Gives SSH verbose output and may be omitted later once you’re familiar with what’s

going on. At the beginning, it helps to debug the process and will emit any error messages
that you wouldn’t see normally.

• D 8080: This defines the local, dynamic port for the forwarding. On your local machine,
the provided port (Note: 8080 in this case, a different one can be selected as long as it is
unused by other daemons) is opened as a local socket with the other endpoint being the
secure connection to the proxy server (creating it in the process).

• f: Puts the SSH process in the background so that the shell can still take other com-
mands. Note that if you need to provide a password to log in, this will not work well. Gen-
erate an SSH key (using ssh-keygen(1)) for this connection and exchange it with the
proxy host (ssh-copy-id(1)) for passwordless logins. This option is not strictly necessary,
but useful once the whole process works.

• C: Compresses the encrypted VPN data. Depending on your network and processor
speed, this may slow down or speed up the connection. Experiment with this option and re-
move it if it is too slow on the shabby hotel service where you’re staying for one night only.

• N: SSH expects to run an interactive shell on the remote host, but we don’t need this for
our VPN. This option will not let SSH open a terminal and will only forward the ports--
which is what we want.

Each of these options is explained further in ssh(1).
A typical session will emit similar messages to his one when using -v:

OpenSSH_8.6p1, LibreSSL 3.3.6
debug1: Reading configuration data /Users/bcr/.ssh/config
debug1: /Users/bcr/.ssh/config line 1: Applying options for *
debug1: /Users/bcr/.ssh/config line 16: Applying options for sshproxyhost.example.com
debug1: Reading configuration data /etc/ssh/ssh_config
debug1: /etc/ssh/ssh_config line 21: include /etc/ssh/ssh_config.d/* matched no files
debug1: /etc/ssh/ssh_config line 54: Applying options for *
debug1: Authenticator provider $SSH_SK_PROVIDER did not resolve; disabling
debug1: auto-mux: Trying existing master
debug1: Requesting forwarding of dynamic forward LOCALHOST:8080 -> *
debug1: mux_client_request_session: master session id: 7
...
debug1: Connection to port 8080 forwarding to socks port 0 requested.
debug1: channel 3: new [dynamic-tcpip]
...
debug1: channel 8: new [dynamic-tcpip]

5 of 6

32FreeBSD Journal • September/October 2022

debug1: channel 7: free: direct-tcpip: listening port 8080 for sshproxyhost.example.
com port 443, connect from 127.0.0.1 port 58994 to 127.0.0.1 port 8080, nchannels 9

This confirms that the VPN is established. The line

debug1: Requesting forwarding of dynamic forward LOCALHOST:8080 -> *

shows how it works: you connect to your localhost port 8080. From there (follow the arrow),
connections are established into the wide, wild world (www) of the internet. Replies are sent
back in the reverse direction.

Your browser (or any other application that should use this VPN tunnel) simply needs to
be set to use this SOCKS proxy in their connection settings. Look for an option like “manual
proxy configuration”, set the socks host to “127.0.0.1” (localhost, see above), the port to 8080
(or the one you specified), and SOCKS5 proxy if there is such an option.

That’s it. Now, we should check if it works by browsing to a service like https://www.
whatismyip.com (or similar sites) that display your public IP address. If this shows the IP of the
host you used in your SSH command (sshproxyhost.example.com in my example), the VPN
works. Wherever you next point your browser, the websites will establish connections, ex-
change traffic with this particular host and dutifully send you the traffic. Nice, isn’t it?

Some Words of Warning
As long as the SSH connection is open to the target system, the VPN tunnel is established.

Be sure to re-establish the tunnel after your laptop goes to sleep as it may have disconnected
you after some time of inactivity. If you’re renting a server on the internet to be a proxy for this
purpose or someone else pays for the traffic on this system, don’t overdo it, as it may drive up
costs. This is not a free solution in that case and if you use this often, you might as well pay for
a professional VPN solution that gives you a couple servers across the world to choose from.

Also, be aware that you are not completely invisible. The SSH logs of the server used as a
proxy will record your login information. Don’t do any malicious or harmful activities with this.
We won’t send your next issue of the FreeBSD Journal to the prison planet that they put you
on when they catch you.

I hope these tips and tricks were useful and will help in your day-to-day SSH interactions.
Make sure to check out the man pages for both the client (ssh(1)) and the server (sshd(8)).
For a more fun and comprehensive reading experience about all things SSH, I highly recom-
mend the SSH Mastery book by Michael W. Lucas.

BENEDICT REUSCHLING is a documentation committer in the FreeBSD project and
member of the documentation engineering team. In the past, he served on the FreeBSD
core team for two terms. He administers a big data cluster at the University of Applied Sci-
ences, Darmstadt, Germany. He’s also teaching a course “Unix for Developers” for under-
graduates. Benedict is one of the hosts of the weekly bsdnow.tv podcast.

PRACTICAL

6 of 6

https://www.whatismyip.com
https://www.whatismyip.com
https://www.bsdnow.tv/

33FreeBSD Journal • September/October 2022

The last column introduced typical examples of IPv6 deployment for a small network
with a single uplink router, such as a network in your home. It did not cover some com-
plex configurations involving DHCPv6 and/or PPPoE because we needed some more

technical knowledge of IPv6 first. Before diving into such complex cases, let’s learn more by
configuring your FreeBSD box. This column will specifically cover the following two topics:
what to do when you cannot get IPv6 Internet access from your ISP and how to configure
IPv6 in essential utilities included in the FreeBSD base system.

Another Way To Get IPv6 Internet Access
The deployment scenarios in the last column assumed that your ISP offers an IPv6 ser-

vice. In that case, the router between your ISP and your home network has an IPv6 GUA¹. All
you have to do is a configuration of one or more IPv6 addresses and an IPv6 default router
address pointing to the router.

So what to do if you get no IPv6 service? While the number of ISPs offering IPv6 service
to their end-users is increasing, most are still optional and not their main service as of 2022.
One of the ways to get access to the IPv6 Internet is the use of a tunneling connection. Fig-
ure 1 shows how “tunneling” works. Network A is an IPv6 network with IPv6 Internet access.
Network B is an isolated IPv6 network. These two networks can be connected over the IPv4
Internet if they have an IPv4 address for the endpoints. Tunneling is a protocol translation
technique that delivers a packet as a payload of another protocol. Namely, IPv6 packets can
be delivered using IPv4 protocol, such as IPv4 TCP and IPv4 UDP. If you are familiar with the
word VPN or virtual private network, you can understand tunneling as the technical founda-
tion of VPN. Once the tunneling works, hosts on Network B can access the IPv6 Internet via
Network A.

Network A
(IPv6)

Network B
(IPv6)

IPv4 Internet

IPv6-over-IPv4
Tunnel Endpoint

IPv6 Internet

IPv6-over-IPv4
Tunnel Endpoint

Figure 1
Figure 1: IPv6 networks connected over IPv4 communication

1 of 10

BY HIROKI SATO

Pragmatic IPv6
(Part 3)

34FreeBSD Journal • September/October 2022

Several tunneling services support IPv6-over-IPv4 tunneling, which you can use for free.
One of the reliable services, Hurricane Electric IPv6 Tunnel Broker, will be explained in the
following subsections.

Hurricane Electric IPv6 Tunnel Broker
Hurricane Electric is a California-based Internet service provider focusing on Internet

transit, data center colocation, and hosting services. Their network coverage is the most
enormous scale in the world. It is usually unsuitable for a written article to introduce a spe-
cific Internet service like this because it rapidly becomes stale. Still, HE’s IPv6 tunneling ser-
vice has been maintained for over 20 years and been a good testing environment for peo-
ple with no native IPv6 access. So the author recommends it as a way to get IPv6 Internet
access for your experimental purpose. Although you cannot assume that it has the same
reliability and performance as your native IPv4 Internet connection by your ISP, HE’s service
performs well, at least for personal use. And another advantage is that HE offers a /48 IPv6
address prefix. /48 is a recommended prefix length for ISPs so that their end-users can en-
joy multiple LANs using the 16-bit². However, many ISPs offer offer only a /64. prefix or two.

Let’s see how to configure the tunneling on your FreeBSD box.

Service Account Registration
The tunneling uses two endpoints on your network and in HE’s network. Between them,

a virtual network will be established over the IPv4 Internet. The endpoint on your side, a
FreeBSD box, will act as an IPv6 router.

You must have a global IPv4 address on your FreeBSD box as a prerequisite. The tunnel-
ing uses IP packets with protocol number 41. This number is the same as IPv6, so the pack-
et-filtering firewall is unlikely to block them. You must not use IPv4 network address transla-
tion by using the IPv4 private address space (10.0.0.0/8, 172.16.0.0/12, or 192.168.0.0/16).

Visit https://www.tunnelbroker.net/ and create your service account. After that, choose
“create regular tunnel” in the web interface. Enter the IPv4 address of your endpoint, and se-
lect one of the HE’s endpoints. All IPv6 packets from your network will be delivered to HE’s
network once before reaching the IPv6 Internet, so you should choose the nearest one. The
author lives in Tokyo, so HE’s Tokyo endpoint is the best, for example. By clicking the “create
tunnel” button, your endpoint on HE’s side will be configured. You need to click it twice be-
cause the first click checks if the endpoint works or not by sending IPv4 ping packets from
HE’s network. Ensure your firewall does not block the incoming ICMP echo request/reply.
The IPv4 source address is shown in the list of HE’s endpoints.

Network Parameters
Four IP addresses, “Server IPv4 Address”, “Server IPv6 Address”, “Client IPv4 Address”, and

“Client IPv6 Address” will be shown on the “Tunnel Details” page.
The Server IPv4 Address is the address for the endpoint on HE’s side, and the Server IPv6

Address is for the IPv6 default router that should be used on your network. The Client IPv6
Address is for your endpoint.

Note that you must be aware of two networks — one between the two routers (this net-
work is virtual) and your LAN. See Figure 2 for more details. A yellow circle means an inter-
face. These two networks are separated by your router, which is the endpoint simultane-
ously in this configuration so that you will get two IPv6 prefixes. You can see the Server and
Client IPv6 Address are on the same subnet prefix. That is the virtual network between the
two endpoints. The prefix for your IPv6 LAN is shown as “Routed IPv6 Prefixes”. You can

2 of 10

https://www.tunnelbroker.net/

35FreeBSD Journal • September/October 2022

configure it to the LAN side on your router. By default, you will get a /64 prefix. By clicking
“Routed /48” prefix button, you will get a /48 prefix in addition to it.

HE’s network

Your network

IPv4 Internet

IPv6-over-IPv4
Tunnel Endpoint
(HE’s router)

IPv6 Internet

IPv6-over-IPv4
Tunnel Endpoint
(your router)

virtual lin
k in IPv6

Server IPv6 Address

Client IPv6 Address

Client IPv4 Address

Server IPv4 Address

Routed IPv6 Prefix

re
al

 li
nk

 in
 IP

v4

real link in IPv4

real link in IPv6

real link in IPv6

Figure 2Figure 2: Tunneling between HE’s network and your network

Now you are ready to configure your FreeBSD box.

Configuration on Your FreeBSD Box
The Tunnel Details page has “Example Configurations” tab and you can see a configura-

tion example for FreeBSD 4.4 or later like this:

ifconfig gif0 create
ifconfig gif0 tunnel IPV4-CLIENT IPV4-SERVER
ifconfig gif0 inet6 IPV6-CLIENT IPV6-SERVER prefixlen 128
route -n add -inet6 default IPV6-SERVER
ifconfig gif0 up

The keywords like IPV4-CLIENT mean the four parameters. This example is not wrong,
but the following version is better:

ifconfig gif0 create
ifconfig gif0 inet tunnel IPV4-CLIENT IPV4-SERVER
ifconfig gif0 up
ping6 ff02::1%gif0
(hit Ctrl-C)
ifconfig gif0 inet6 IPV6-CLIENT IPV6-SERVER prefixlen 128
route -n add -inet6 default IPV6-SERVER
ifconfig bge0 inet6 ROUTED-IPV6-PREFIX/64
sysctl net.inet6.ip6.forwarding=1

The “gif0” is an instance of gif(4) pseudo-interface network driver on FreeBSD. An
IPv6 packet is encapsulated in an IPv4 packet³ as shown in Figure 3. A rectangular represents
a bit sequence from left to right. An IPv4 packet associated with a transport protocol, such
as TCP or UDP, typically consists of an IPv4 header, a transport-layer header, and the payload
(data). The three parts are concatenated to form a single packet and the packet is sent over

3 of 10

36FreeBSD Journal • September/October 2022

the network. In the same way, an IPv6 packet with the same transport protocol consists of
the three parts. The difference is the first element.

If we consider an IPv6 packet as data for an IPv4 packet, we can send the IPv6 packet
over IPv4 network. On the sender side, a router builds an IPv4 packet that has an IPv6 pack-
et inside, and on the receiver side, another router extracts the IPv6 packet. This occurs on
HE’s router and your router when using gif(4) interface. In practice, encapsulation of an
IPv6 packet into an IPv4 packet is done by prepending an IPv4 header to the IPv6 packet, as
shown in Figure 3 because the transport-layer header is almost the same as each other.

To configure this interface, you need two sets of addresses. First, you have to create a
new gif(4) interface by using ifconfig gif0 create. Then the tunneling can be config-
ured by using “tunnel” keyword in the ifconfig(8) utility with two addresses for the end-
points. The first address is yours, and the second address is HE’s.

IPv4 Header Transport Layer Header
(UDP, TCP, etc.) DataNormal IPv4 Packet

Data Top to End

IPv6 Header Transport Layer Header
(UDP, TCP, etc.) DataNormal IPv6 Packet

IPv6 Header Transport Layer Header
(UDP, TCP, etc.) DataIPv6-in-IPv4 Encapsulated Packet IPv4 Header

Figure 3

Figure 3: Encapslation used in gif(4) interface

After that, a virtual network is established. Note that this virtual network has no connec-
tion state, such as “connected” or “disconnected”. Packets are just sent as “IP datagram” be-
tween two IPv4 addresses on demand. An IPv6 packet is encapsulated, as shown in Figure
3, and sent as an IPv4 packet to the HE’s endpoint, and it will be decapsulated in the HE’s
network. While the IPv4 packets may be lost somewhere on Internet, the error recovery is
made in the upper-layer protocol, namely the IPv6 packet inside the IP datagram. Addresses
for the tunneling are often called “addresses for the outer protocol”. The outer protocol, in
this case, is IPv4.

To check if the virtual network works, you can send an IPv6 ping. After the second line of
the example configuration, enter ifconfig gif0 up and try an IPv6 ping by using the au-
tomatically-configured LLA⁴ of the gif0:

ifconfig gif0 create
ifconfig gif0 tunnel IPV4-CLIENT IPV4-SERVER
ifconfig gif0 up
ping6 ff02::1%gif0
PING6(56=40+8+8 bytes) fe80::80c8:4a75:123a:8a32%gif0 --> ff02::1%gif0
16 bytes from fe80::80c8:4a75:123a:8a32%gif0, icmp_seq=0 hlim=64 time=0.084 ms
16 bytes from fe80::4a52:2e06%gif0, icmp_seq=0 hlim=64 time=4.765 ms(DUP!)
16 bytes from fe80::80c8:4a75:123a:8a32%gif0, icmp_seq=1 hlim=64 time=0.081 ms
16 bytes from fe80::4a52:2e06%gif0, icmp_seq=1 hlim=64 time=2.738 ms(DUP!)
ˆC
--- ff02::1%gif0 ping6 statistics ---
2 packets transmitted, 2 packets received, +2 duplicates, 0.0% packet loss
round-trip min/avg/max/std-dev = 0.081/1.917/4.765/1.970 ms

4 of 10

37FreeBSD Journal • September/October 2022

The virtual network is working fine if you get the (DUP!) response. This is because you
should have a reply from the router on the HE’s side and another from the gif0 interface
itself. If you get no response from another side of the endpoint, double-check the config-
ured IPv4 addresses and packet filters located between the two.

Then you need to configure actual IPv6 addresses for communication. This can be done
using the ifconfig(8) utility, the sixth line of the example configuration. This line config-
ures a point-to-point network that has only two IPv6 nodes. At this point, you can send an
IPv6 ping to IPV6-SERVER.

The above configuration is sufficient if you just want access to the IPv6 Internet from the
box. Your FreeBSD box can now work as an IPv6 host node. To make it a router for your /64
and /48 LANs, you have to configure the default IPv6 route to IPV6-SERVER and enable the
IPv6 packet forwarding feature. The following part in the example does it:

route -n add -inet6 default IPV6-SERVER
ifconfig bge0 inet6 ROUTED-IPV6-PREFIX/64
sysctl net.inet6.ip6.forwarding=1

This configuration assumes that the interface facing your LAN is bge0. ROUT-
ED-IPV6-PREFIX is your prefix assigned by HE’s service. You should have both /64 and /48.
You can configure both on the same interface or on a different interface.

There is one thing you need to think about here. What IID⁵ should be used? That is the
router’s address on the LAN.

You can see that IPv6 addresses used for the tunneling interface were ::1 and ::2 in their
IIDs. That is one of the strategies. However, the author recommends using the all-zero ad-
dress for simplicity. If you get 2001:db8::/48 from HE, pick up a /64 network in that range,
say 2001:db8:1::/64, and configure it as the router address. The IID is all-zero. This looks
scary because an all-zero host address in IPv4 has a special meaning. Although it has never
been clearly defined in RFC or other specifications, some traditional network implementa-
tions have recognized it as a broadcast address, not a unicast one. one. While the all-zero
host address works with no problem on FreeBSD, the author guesses that you have avoided
it in practice if you learned TCP/IP network in 20th century. In IPv6, the all-zero IID is com-
pletely valid. There is another reason why the all-zero address is suitable for a router, but it
will be covered in the later columns.

After configuring the default router and the router address on the LAN, you can config-
ure the hosts on the LAN. See also the last column about what options you can take. Run-
ning rtadvd(8) on bge0 to enable automatic configuration is highly recommended.

Configuration in /etc/rc.conf
Once you confirm if your IPv6 tunnel works, put the configurations by hand into /etc/

rc.conf:

cloned_interfaces="gif0"
ifconfig_gif0="inet tunnel IPV4-CLIENT IPV4-SERVER"
ifconfig_gif0_ipv6="inet6 IPV6-CLIENT IPV6-SERVER prefixlen 128"
ipv6_defaultrouter="IPV6-SERVER"
ipv6_gateway_enable="YES"
ifconfig_bge0="inet6 ROUTED-IPV6-PREFIX/64"

5 of 10

38FreeBSD Journal • September/October 2022

Before rebooting, you can check if it works by using service(8) command like this. Two
ping6 are to check the tunnel endpoint reachability and the default router configuration:

service routing start
service netif restart gif0
ping6 ff02::1%gif0
ping6 IPV6-SERVER

That’s all. You can now build IPv6-capable Internet servers on your LAN because the con-
figured IPv6 addresses are reachable from the IPv6 Internet.

There is one additional comment about ipv6_defaultrouter. While the above exam-
ple uses IPV6-SERVER, it can also be the router’s LLA on HE’s side, you can see by sending
a ping, or you can set it to “-interface gif0”. The former is not recommended because
the LLA can change when HE changes its equipment. It is recommended to use an LLA
for a static route only when it is manually configured and under your control. The latter is
another way to simplify the configuration. Because gif0 is configured as a point-to-point
interface, the route to the router on the HE’s side can be specified by using the interface
name on your side. Doing this allows you to use a consistent configuration even if the ad-
dress IPV6-SERVER is changed.

Using IPv6 in Essential Utilities
Another topic in this column is practical configuration examples for software in the FreeBSD

base system. After you obtain access to the IPv6 Internet, let’s make software use of IPv6.

General Rules and Pitfalls
From the user’s point of view, the most significant difference is the notation of an ad-

dress. Except for that, TCP and UDP work just like IPv4. So you can get started by replacing
an IPv4 address in a configuration file with one in IPv6. The first column covered OpenSSH
as an example. Let’s see what change is required.

Configurations for the sshd(8) daemon is stored in /etc/ssh/sshd_config. You can
edit it directly, but modifying the configuration using command-line flags allows you to
keep the default configuration file intact. For example, you can put the following lines into
/etc/rc.conf to change some of the configurations partially:

sshd_enable="YES"
sshd_flags=" \
 -oPort=22 \
 -oUsePAM=no \
"

Let’s go back to the IPv6 configuration topic. The sshd(8) daemon listens to tcp/22 in
both IPv4 and IPv6 by default. You can see the following lines in /etc/ssh/sshd_config.
All lines are commented out, but it means they are enabled by default:

#AddressFamily any
#ListenAddress 0.0.0.0
#ListenAddress ::

6 of 10

39FreeBSD Journal • September/October 2022

“::” is an IPv6 address. This all-zero address is called “unspecified IPv6 address”. Note that
this is the all-zero subnet prefix and the all-zero IID simultaneously, not the same as all-zero
IIDs in the previous section. This particular IPv6 address means any of IPv6 addresses. So the
sshd(8) daemon listens to all of the IPv6 addresses configured on the box.

Like this, some software simply adopt raw IPv6 addresses in the configuration file. In
that case, you can write an IPv6 address instead of IPv4 without further consideration. The
sshd(8) is smart enough to distinguish which address family is used. If you want to restrict
IPv6 addresses for the sshd(8) daemon, you can put a -oListenAddress option:

sshd_enable="YES"
sshd_flags=" \
 -oPort=22 \
 -oUsePAM=no \
 -oListenAddress=2001:db8::1 \
"

Although IPv6 addresses in a configuration file should be written in the recommended
way in RFC 5952⁶, almost all of software accept a redundant notation such as 2001:0db8:0
000:0000:0000:0000:0000:0001. And if it is an LLA, you must add %zoneid part.

However, some do not use raw IPv6 addresses because they break the backward com-
patibility with IPv4. Let’s see syslogd(8) as an example:

syslogd_enable="YES"
syslogd_flags="-s -cc -b [fe80::f4:a6ff:fe43:50b%epair5b]"

This is one of the configurations used on the author’s FreeBSD box. The syslogd(8)
daemon has a -b option to choose the listening address and port number. It listens to the
address and accepts incoming UDP packets as a logging information source. The address
format in IPv4 is “-b address:service”. The service is a port number or a service name listed
in /etc/services. Thus the syslogd(8) daemon cannot recognize which colon is for “ser-
vice” part if a raw IPv6 address is used.

To solve this issue, the syslogd(8) daemon uses a format like “[ipv6-address]:service”. An
IPv6 address must be enclosed with square brackets. If there is the %zoneid part, it must be
inside the brackets. This is a popular format among software using “address:port”.

Although this square-bracket format works if the software supports it, you have to be
aware of the brackets are one of the meta-characters of shell programs such as /bin/sh.
Actually, the above example for syslogd(8) does not work because the square brackets
are sometimes interpreted as meta-characters. A pair of brackets will be replaced with a file
or directory name if the string matches. It works if there is no matched name, but if there is
any, the configuration fails strangely. The following is another working example:

syslogd_enable="YES"
syslogd_flags=" \
 -b 192.168.0.10 \
 -a 192.168.0.0/24 \
 -a [fe80::ffff:2:200%bridge0]:* \

7 of 10

40FreeBSD Journal • September/October 2022

 -b [fe80::ffff:1:202%bridge0] \
 -a [fe80::%bridge0]/64 \
"

You can see “*” as an argument of the -a option. This means the daemon accepts any
UDP port. This may match one or more filenames and be replaced when the command
line is evaluated. You might consider that this can be solved using “\” just before “*”. It may
or may not work because it depends on how the shell variable is evaluated. So you must be
careful about the pathname expansion when software requires the square-bracket format.
Of course, there is no problem when it appears in a configuration file.

Another point where you should pay attention is how to specify a prefix length by us-
ing a format like “/64”. In the above example, the prefix length is outside the brackets.
This is because the prefix length is not a part of an IPv6 address. Locations of a raw ad-
dress, the zone id part, and square brackets are sometimes confusing. Remember that
[fe80::/64%bridge0] and [fe80::%bridge0/64] are all wrong.

The last pitfall is a case when specifying an address by using a hostname. You can often
put a hostname where an address is supposed to be specified. The hostname is usually re-
solved by name services available on the system. A single name can have multiple addresses
because DNS supports and may return multiple A and AAAA resource records. Under such
a situation, some software needs clarification about what address and which address fam-
ily will be used. There is no consistent way to specify an address family of a hostname. You
should have a unique hostname with a single address if you want to use hostnames.

Let’s see more working examples.

DNS nameserver in /etc/resolv.conf
For simplicity, the configuration of recursive DNS servers should be handled by RA mes-

sages explained in the last column. However, if you have a DNS server on the same link, you
can add an LLA manually and specify it like this:

nameserver fe80::ffff:1:35%bge0

One of the reasons why using a manually-configured LLA is that you can use the same
address on different networks. It dramatically simplifies the administration.

However, LLAs in /etc/resolv.conf do not work for software that depends on LDNS
library and does not use resolver functions in FreeBSD libc. This means that the drill(1)
utility does not work with LLAs while there is no problem with using IPv6 GUA in /etc/re-
solve.conf. And dhclient(8) does not work, either. As a workaround, you need “nam-
eserver” line by using IPv4 address or IPv6 GUA⁷.

NFS and /etc/exports
The /etc/exports file uses raw IPv6 address format. It supports the prefix length nota-

tion for “network” keyword. An example is as follows:

/a/ftproot -alldirs -maproot=0:0 -network 2001:db8:1::/64
/a/ftproot -to -alldirs -maproot=nobody:nobody -network fe80::%lagg0/10

Note that NFS does not fully support LLAs because the RPC library always handles IPv6
addresses without the zone ID. The second line can be specified, and it is a correct notation,

8 of 10

41FreeBSD Journal • September/October 2022

but it does not work, unfortunately⁸. IPv6 GUA works fine. Avoid to use LLA for NFS for
now. It should be fixed on FreeBSD 14.

Sendmail
The sendmail program also uses the raw IPv6 address format. And it supports the ad-

dress family selection keyword for each address. An example is as follows:

sendmail_enable="YES"
sendmail_flags="-L sm-mta -bd -q30m \
 -ODaemonPortOptions=Family=inet,address=127.0.0.1,Name=MTA \
 -ODaemonPortOptions=Family=inet6,address=::1,Name=MTA6,M=O \
 -ODaemonPortOptions=Family=inet,address=0.0.0.0,Port=587,Name=MSA,M=E \
 -ODaemonPortOptions=Family=inet6,address=::,Port=587,Name=MSA6,M=O \
 -ODaemonPortOptions=Family=inet,address=0.0.0.0,Port=465,Name=MSA,M=s \
 -ODaemonPortOptions=Family=inet6,address=::,Port=465,Name=MSA6,M=s \
"

You can safely use a hostname with both a single IPv4 and a single IPv6 address simulta-
neously because of “Family=” keyword.

Configuration of the transport used by MSA⁹ is handled by lines in /etc/mail/
FreeBSD.submit.mc:

dnl If you use IPv6 only , change [127.0.0.1] to [IPv6:::1]
FEATURE(‘msp’, ‘[127.0.0.1]’)dnl

In this configuration file, a modified square-bracket format is used because the sendmail
program requires the square-bracket format even for IPv4. If you want to use IPv6,
[IPv6:raw-ipv6-address] must be used.

Syslogd
The command-line options were explained in the previous section. In the configuration

file, /etc/syslog.conf, a remote host can be specified by using the raw IPv6 address for-
mat. This is an example used to receive logs from a jail environment running ISC BIND:

+fe80::e:1ff:fec5:e80b%bridge100
!-named
*.notice;authpriv.none;kern.debug;lpr.info;mail.crit;news.err; /var/log/ns/messages
!named
. /var/log/ns/named.log
!*
+@

Summary
Getting access to the IPv6 Internet by using tunneling service and configuring essential

software included in the FreeBSD base system to use IPv6 are explained.
Tunneling using gif(4) interface is not specific to Hurricane Electric IPv6 Tunnel Broker.

It can be used to build your own virtual network; while it may be too primitive for a practical

9 of 10

42FreeBSD Journal • September/October 2022

purpose — it has no support for encryption or automatic configuration. FreeBSD provides a
rich set of tools for network experiments.

While IPv6 configuration for userland programs typically involves only writing IPv6 ad-
dresses into the configuration file instead of IPv4, several pitfalls are listed in this column.
There is also software that does not handle an IPv6 LLA correctly. Try IPv6 on your box, and
if you find a problem, please report it to the author and/or the FreeBSD project.

In the next issue, more software configuration and NDP (Neighbor Discovery Protocol),
one of the IPv6 core protocols you should be familiar with will be explained.

Footnotes
1 GUA stands for “global unicast address”, which is routable in the IPv6 Internet.
2 Remember that an IPv6 GUA has the prefix and the IID, and the IID is almost always 64-bit

long. If you have a 48-bit prefix, you can have 65,536 networks in your LAN by choosing
the 16-bit. If you have a 64-bit prefix, you can have a single network only.

3 This protocol is defined in RFC 4213, “Basic Transition Mechanisms for IPv6 Hosts and
Routers”.

4 LLA stands for Link-Local Address. After ifconfig gif0 up, an LLA is automatically con-
figured. See also the last column for more details.

5 IID stands for Interface IDentifier. The lower bits in an IPv6 address that is unique for each
host. The length is usually set to 64, but theoretically, any length equal to or shorter than
128 − (subnet prefix length) is allowed.

6 Rules for text representation of an IPv6 address are covered in the first column. See also
RFC 5952: “A Recommendation for IPv6 Address Text Representation”.

7 The author is working on these problems, and it will hopefully fixed in near future.
8 The author is also working on these problems.
9 MSA stands for Mail Submission Agent. This is a program to submit an email to an MTA,

Mail Transfer Agent. The sendmail program can be used as an MSA or an MTA.

HIROKI SATO is an assistant professor at Tokyo Institute of Technology. His research topics
include transistor-level integrated circuit design, analog signal processing, embedded sys-
tems, computer network, and software technology in general. He was one of the FreeBSD
core team members from 2006 to 2022, has been a FreeBSD Foundation board member
since 2008, and has hosted AsiaBSDCon, an international conference on BSD-derived oper-
ating systems in Asia, since 2007.

10 of 10

Donate to the Foundation!

Support
 FreeBSD

You already know that FreeBSD is an internationally
recognized leader in providing a high-performance,
secure, and stable operating system. It�s because of
you. Your donations have a direct impact on the Project.

Please consider making a gift to support FreeBSD for the
coming year. It�s only with your help that we can continue
and increase our support to make FreeBSD the high-
performance, secure, and reliable OS you know and love!

Your investment will help:

Funding Projects to Advance FreeBSD

Increasing Our FreeBSD Advocacy and

Providing Additional Conference
Resources and Travel Grants

Continued Development of the FreeBSD
Journal

Protecting FreeBSD IP and Providing
Legal Support to the Project

Purchasing Hardware to Build and
Improve FreeBSD Project Infrastructure

Making a donation is quick and easy.
freebsdfoundation.org/donate

®

®

Dear Journal Letters Column,

I have to integrate this new hardware doohickey
into all our authentication systems on all our hosts,
no matter which operating system they’re using.
It’s harder than I thought. The differences between
OpenSolaris and FreeBSD and Linux and AIX and
HP/UX and all the other Unixes are all tiny — but
taken together they seem huge. Is there an easier
way to do this?

 —Perplexed

Perplexed,
I recently had the chance to go to my first concert in three years—Nine Inch Nails,

Nitzer Ebb, and Ministry. I kept myself safe, with my stick-on mask and ear plugs and eye
goggles and full-body bunny suit, not to mention the barbed wire halo, but at least I was
able to attend this glorious outpouring of incendiary rage and righteous betrayal and the
kind of defiant bitterness that gives me reason to crawl out of my cage and scrape the bile
off my teeth every morning.

That approaches how I feel about PAM.
“But you have to have PAM” people shout. “It’s a necessary evil, it’s a standard!” Nope.

It isn’t. It looks like a standard so long as you don’t look at it. Sun Microsystem, the well-
spring of NFSv2 and Java and many other seductive immortal nightmares, offered it up to
the public in the hope it would be adopted. It was. Sun did not organize an Interop as they
did for NFS or maintain Java-style control. Instead, they left everybody free to implement
it in their own preferred, slightly different manner. Yes, yes, the Common Desktop Envi-
ronment became a standard back in the 1990s and mentioned PAM integration, but any
standards that coexisted with Saturday morning cartoons and the ankylosaurus should
not be considered relevant today. The closest thing we have to a PAM standard is in the
document X/Open Single Sign-on Service (XSSO) — Pluggable Authentication Modules
from an attempt to nail it into POSIX, but folks followed about ninety percent of that, and
we all know that ninety percent compatible equals zero percent interoperable.

We don’t even have a standard language. Is it a PAM policy or a chain? Rules or mod-
ules? Types or rules? Even if you read the documentation, you can only follow it through
intuition and good karma.

The Journal’s editors saw fit to have some PAM apologist write a piece for this issue. I
won’t glorify it by calling it an “article,” because he probably cut-and-pasted snippets of
his book for it and shamelessly ended it with a plug for same. I’m not saying that he’d do

1 of 3

44FreeBSD Journal • September/October 2022

by Michael W Lucas

freebsdjournal.org

anything for a buck, but if I was unlucky enough to be near him, I would absolutely men-
tion in the sort of voice I normally reserve for screaming back at Al Jourgensen that “eth-
ics” are a thing even in information technology and that he’s doing all this in public where
anybody who exerts a morsel of effort can figure out his little scam. Fortunately for him,
nobody cares enough about his feeble antics to bother.

Forget standardization. Not everything has to be a standard — otherwise, we couldn’t
make the mistake of inventing new things. Look at how PAM works. You grab these
shared libraries, never mind where they came from or how carefully they’ve been audit-
ed, chain them together, and force them to collectively decide how your authentication is
going to work? We all know how access control lists work. This is allowed. That is not. You
carefully define the characteristics of permitted activity and block everything else. What
you do not do is implement a wishy-washy system where rules can say things like “yes, but
only if everybody else agrees” or “I’m gonna veto it, but y’all go ahead and vote.”

Voting? Security is not a democracy! It’s not even a republic.
Not that PAM holds a proper vote. It’s more like

a bunch of drunk programmers deciding what to
order for dinner. You go around the table, sure, but
finally the one with the deepest understanding of
compiler internals picks whatever will give everyone
the worst hangover possible. The others get to pick
a couple of side dishes and maybe ask for a pack of
fortune cookies, even though the cashier keeps re-
minding everyone that they do fortune saganaki be-
cause they’re a Greek joint and your fate is always
delicious.

How is that access control, especially without
wonton soup?

Fine. Fine. Here we are.
But another thing—debugging. I fully understand

that all debugging boils down to scattering print
statements throughout the code and watching it go wildly astray, but PAM doesn’t even
have a standard way to do that. Maybe debug statements will work. Perhaps you can use
PAM’s “echo” module and spit stuff back at the user, which will absolutely never terrify
that guy from Shipping & Receiving who needs three tries and divine intervention to suc-
cessfully log onto the menu-based inventory system. He’ll be fine. Pinky swear.

So you use pam_exec and write a little script that dumps information to a log file, or
maybe even into logger(1) and straight into the system log. Using a shell script in your
authentication system doesn’t guarantee you’ll get broken into, especially if they’re ex-
tremely simple, but shell scripts have this horrid tendency to grow and every line of code
is a vulnerability. You might as well write a little Perl script that checks authentication cre-
dentials against a Microsoft Excel spreadsheet over the network.

Wait—the PAM apologist already suggested doing exactly that?
Time to lower my standards. Again.
But, again, here we are. PAM is the standard that isn’t. We’re stuck with it.
The only consolation I can offer is that your impressions are valid. Nothing is compat-

ible. Everything uses its own language. I’m told that the Pope declared that time spent

2 of 3

Not everything has
to be a standard —
otherwise, we couldn’t
make the mistake
of inventing new things.

45FreeBSD Journal • September/October 2022

configuring PAM counts as time served in Purgatory, however, so be sure to fill out your
time sheet correctly.

Hope? Yes, I have hope. I hope is that systemd swallows Linux-PAM and OpenPAM be-
comes the Last Stack Standing. Perhaps then we can have an authentication system de-
signed by sober people who know how to order fortune cookies.

With our luck, though, we’ll get one involving spreadsheets and Perl scripts.

Have a question for Michael?
Send it to letters@freebsdjournal.org

MICHAEL W LUCAS is the author of Networking for System Administrators, $ git commit
murder, and many others. His new books include OpenBSD Mastery: Filesystems and
Prohibition Orcs. Get the entire interminable list from his SNMP OID or at https://mwl.io.

3 of 3

Pluggable Authentication Modules:
 Threat or Menace?

PAM is one of the most misunderstood parts of systems
administration. Many sysadmins live with authentication
problems rather than risk making them worse. PAM’s very
nature makes it unlike any other Unix access control system.

If you have PAM misery or PAM mysteries, you need PAM
Mastery!

“Once again Michael W Lucas nailed it.” — nixCraft

PAM Mastery by Michael W Lucas
https://mwl.io

46FreeBSD Journal • September/October 2022

freebsdjournal.org

https://mwl.io

47FreeBSD Journal • September/October 2022

Performance analysis is a difficult subject — a field where any
claim must be backed up with a serious amount of rigor, detail
of the work done, and where you must be very confident in your
results.

In computer science we are almost dissuaded from worrying
about performance issues. the frequently taught Knuth quote,

 Premature optimization is the root of all evil
is used to keep junior developers on track to not worry too
much about the small things.

Most of the time, this advice is given with good intentions.
When you are learning, it is better to finish projects — to prog-
ress — rather than getting lost in minute details. But this has had
the opposite effect of making information on improving performance of real systems hard
to come by.

The full Knuth quote,
 We should forget about small efficiencies, say about 97% of the time:
 premature optimization is the root of all evil.
 Yet, we should not pass up our opportunities in that critical 3%.
 A good programmer will not be lulled into complacency by such
 reasoning, but he will be wise to look carefully at the critical code;
 but only after that code has been identified

tells us there are times where we should really care and our efforts spent on investigation
will be rewarded.

There have been several performance books written in the last few years that I hold in
high regard and have recommended many times. Brendan Gregg’s most recent books
Systems Performance (which acts to replace the long favored DTrace performance book)
and BPF Performance Tools are well known and come from one of the world’s leading ex-
perts in investigating and designing tools to better understand real-world, system perfor-
mance. The lesser known, but excellent (and open source) Performance Analysis and Tuning
on Modern CPUs by Denis Bakhvalov, dives deeper into why CPUs are slow and how com-
puters can the best make use of them.

The Gregg books act as excellent introductory material for the performance expert to
be. They offer a high-level view of looking at systems and using tools. BFP Performance
Tools and Systems Performance offer methodology for the performance analyst and very

REVIEW BY TOM JONES

Understanding
Software Dynamics
by Richard L. Sites

1 of 3

48FreeBSD Journal • September/October 2022

high-quality reference material that should be your first port of call when trying to debug
an issue. With these two books and reading the source for the accompanying tools, you can
learn how to build your own performance tools, but the books don’t go into depth on what
makes a good performance analysis tool.

Bakhvalov’s Performance Analysis and Tuning on Modern CPUs shows how the perf set
of tools can be used on Linux to explore programs. It introduces the core fundamentals a
developer would need to know to understand the output of perf and how different fac-
tors influence software performance as analyzed with perf. The book is — again — a great
introduction, but lacks solid examples (which are available as free course material from the
author) and lacks the next steps for the developers who need their own custom tools to de-
bug their problems.

Understanding Software Dynamics (USD) by Richard L. Sites stands out from the other
recent works. It contains introductory material into how computers work and the factors
that determine their performance, and it expands on this by
practically describing the limitations that performance tools
must meet to be useful to use on real systems.

The author is a veteran of the computer industry. He de-
veloped the first CPU performance instructions while at
DEC and has had a long career investigating performance
issues from CPU level bottlenecks up to entire data center
wide application stacks while working with Google and Tesla.

USD acts as a practical introduction to exploring the
performance of large systems as their dynamics change.
In large systems, there are a lot of transactions moving
through at a time — the performance of individual transac-
tions is normally inconsequential. USD looks at the distribu-
tion of these transactions. Problems live with the outliers:
Total systems performance is made of both the fast and
the slow transactions and USD offers guidance to discover
what the best- and worst-case performance should be in
a system and how to explain what is happening when the
90th percentile is outside these bounds.

USD follows a data center RPC system as its core example and builds tooling to discover
where performance issues can appear. The first 7 chapters look at measurement and how
different system components contribute to final results. Here USD digs into very fine de-
tail, offering guidance to understand why CPU instructions, memory, disk or network access
might be the cause of performance bottlenecks in a system.

Throughout these explorations, the lesson is that looking at individual subsystems is not a
good model for thinking about the performance of the entire system. Sites shows his think-
ing for establishing what the best- and worst-case performance of any computer subsystem
should be and demonstrates how to test these estimates in the real world.

The second part of USD covers how to observe and measure the performance of real
systems while maintaining acceptable levels of overhead. In this part, the reader learns dif-
ferent ways that the tools we use today are implemented and the opportunities for observa-
tion they provide. Here we are introduced to the design criteria for observation tools.

The third part builds on the lessons of the first two introductory parts of the book and

Understanding

Software

Dynamics (USD)

by Richard L. Sites

stands out from

the other recent

works.

2 of 3

49FreeBSD Journal • September/October 2022

shows a real implementation of the tracing ideas by introducing the KUTrace framework
kernel — userspace tracing framework.

KUTrace is an example of a high bandwidth logging framework and has to be imple-
mented with low overhead. It offers an extra source of information for debugging overly
long running transactions.

KUTrace is a patch set for Linux that adds a framework for adding small ~64byte log en-
tries to points in the kernel and userspace. The tracepoints are __predict_false branches
by default. Once the KUTrace kernel module is loaded, they become active and start being
saved into a buffer in the kernel.

USD goes into detail explaining the design of the log en-
tries that KUTrace uses, the system interface and the oper-
ation of the kernel module.

Sites rounds out the text with 9 final chapters, each of
which practically walks through a problem in one of the
performance domains that book has examined. There is
an example problem for a case of too much CPU execu-
tion, executing slowly and waiting for the CPU, Memory,
Disk, Network, Locks, Time, and queues. Each of these
chapters is a lesson acting on information presented earli-
er in the book.

Understanding Software Dynamics is an excellent addi-
tion to the library for anyone interested in a practical un-
derstanding of performance issues in real systems. It does a
great job of introducing required background understand-
ing without going into such depth that it is difficult to fol-
low. Several chapters come with examples that help rein-
force and expand on the lessons provided in the preceding
text and they are focused on improving understanding.

Sites is clear in his explanation throughout, there are high quality figures taken from real
systems at Google and from the example systems. Added color comes from the author’s
own experiences working on performance.

USD is a well written and carefully constructed book. It supports itself well and is ap-
proachable for a reader who hasn’t previously delved into performance analysis. For a reader
with a lot of experience, there is still much information to learn from here about the specif-
ics of performance of different computer components and the new tooling the author in-
troduces.

TOM JONES, FreeBSD Developer and co-host of the BSDNow Podcast, wants FreeBSD-
based projects to get the attention they deserve. He lives in the North East of Scotland and
offers FreeBSD consulting.

3 of 3

It does a great

job of introducing

required background

understanding

without going into

such depth that it is

difficult to follow.

50FreeBSD Journal • September/October 2022

We all know the scene. The room is dark, with the only light provided by the laptop
screen. The hooded figure is typing furiously at the keyboard. Suddenly, lines of
symbols, letters, and numbers fly into the terminal window as the nefarious char-

acter smiles brightly. They. are. in.
But not so fast! The dogged security team has been planning for this. Protocols are in

place. The breach is secured; the sinister hacker is captured; and of course, the world is
saved. Ah, MovieOS. Don’t you just love it?

Now we all know in the real world, trying to keep any type of technology secure is nearly
a herculean task. Strengthening security for the FreeBSD Operating System is no different.
But we wanted to know more about exactly what the FreeBSD Security Team does and why
they do it. So, we sat down with Gordon Tetlow, a volunteer FreeBSD Security Officer, and
Ed Maste, Deputy Security Officer, and Mark Johnston, a FreeBSD security team member.
The latter two are sponsored by FreeBSD Foundation and support the security team in both
ongoing operational aspects of the team’s work, and proactive development.

Q: What is FreeBSD Project’s overall approach to security?

Ed Maste: The security team focuses on several different aspects of security within
FreeBSD. One area is what’s often called a PSIRT, or Product Security Incident Response
Team. This is a main focus of the security team today.

This team fields reports about vulnerabilities and issues and responds by identifying the
problem and managing the release of the fix. Examples may include errors in drivers or pro-

BY PAM BAKER AND ANNE DICKISON

Keeping FreeBSD Secure:
Learn the Whys and Hows
with the FreeBSD Sec Team

1 of 4

51FreeBSD Journal • September/October 2022

tocols, bugs found by our own proactive fuzzing efforts, other automated tools, and code
review. The team’s response includes preparing or integrating patches to fix those issues,
preparing and publishing security advisories to notify the community of the issue, and de-
ploying binary updates.

A second focus area is proactive security work, which includes targeted efforts to find is-
sues, vulnerability mitigations that reduce the impact when issues do occur, and general ar-
chitectural security review. These efforts were historically undertaken directly by the secu-
rity team. In the current security team model responsibility for certain areas has moved to
separate groups of subject-matter experts. FreeBSD’s ran-
dom number generation subsystem is an example of one
such area — the security team remains involved, but specif-
ic responsibility is delegated.

Proactive security work also includes ongoing code re-
view and auditing, following security reports and discussions
in other projects, fuzzing and test failure analysis, and related
areas.

And a third area is the security of the FreeBSD infrastruc-
ture itself, meaning the FreeBSD website and source code
repository and all the services that we run. In these cases,
there are other groups within the project who have primary
responsibility, while the security team may offer advice and
review.

Gordon Tetlow: The other role that we play is in coordi-
nation with industry efforts. There are vulnerabilities that
affect more than just the FreeBSD project, where there is
common code shared with other open source projects. We
end up with industry-wide efforts to address those. An example would be OpenSSL, which
is another project that we incorporate. We have to coordinate disclosure and coordinate
patch response for that.

And then we do much the same all the way upstream, too. One example is when Intel
had the “Spectre” and “Meltdown” speculative execution issues a couple of years ago. Liter-
ally everybody, every operating system manufacturer, and a lot of other folks all had to get
together and coordinate an industry-wide response, for better or for worse. We play an im-
portant role in that broad industry response.

Q: What is FreeBSD’s specific role in disclosures?
Ed Maste: If we have a vulnerability reported in FreeBSD that we will be addressing, we han-
dle the public disclosure to the FreeBSD community of that vulnerability and handle the
patch and binary update for the fix.

We also are involved in public disclosure in terms of coordination with industry partners
and peers. If there’s an issue that affects Linux and OpenBSD and NetBSD and FreeBSD,
for example, and someone is coordinating the reporting of that issue with all of the differ-
ent communities, then we’ll collaborate with those other projects to help make sure that
the fixes are released on the schedule set by the vulnerability reporter, or the industry peers
who are managing and coordinating the issue.

2 of 4

Proactive security

work also includes

ongoing code review

and auditing.

52FreeBSD Journal • September/October 2022

Q: Do you have formalized roles, or a mission statement or charter guid-
ing your security work?
Ed Maste: Quoting from the FreeBSD project’s “Administration and Management” page,

The FreeBSD Security Team (headed by the Security Officer) is responsible for keep-
ing the community aware of bugs, exploits and security risks affecting the FreeBSD src and
ports trees, and to promote and distribute information needed to safely run FreeBSD sys-
tems. Furthermore, it is responsible for resolving software bugs affecting the security of
FreeBSD and issuing security advisories. The FreeBSD Security Officer Charter describes
the duties and responsibilities of the Security Officer in greater detail.

Gordon Tetlow: The security officer has an open-ended charter to make things secure,
which includes the ability to override actions and decisions of other developers, if necessary,
in the name of security. Now that’s not something that we exercise lightly and it’s definitely
something we have to be very conscientious about using. But the charter mandates that we
ensure, by whatever means necessary, that what we’re doing is the right thing.

Q: How are reports on security advisories handled? Can they be anony-
mous and protected?
Ed Maste: We provide guidance on the FreeBSD website that describes the policies, the or-
der of the approaches that the sec team follows, security advisories, and other helpful infor-
mation.

Gordon Tetlow: Note the section “When is the security ad-
visory considered” right on the front page for the security
team. For people who are interested in reporting security
advisories, there’s also documentation on how to report a
security advisory. That’s listed kind of as a subset to that.

People can send us regular or PGP-encrypted email to
secteam@FreeBSD.org. What we want to let people know
is if they’re wanting to get in touch with us on a sensitive is-
sue, they’re welcome to encrypt the data to us. That way
they can know that only a certain couple of individuals
would be able to read it.

Q: How else do you find security issues?
Mark Johnston: We aim to find security problems proactively, in addition to addressing vul-
nerabilities reported by third-party researchers. We try to be proactive and responsive to all
situations that arise.

In my case, it’s largely just about day to day working on FreeBSD, looking at bug reports
and user submissions and also doing my own testing. We have several developers in the
community who spend most of their time doing nothing but testing FreeBSD and report-
ing bugs. Upon further examination like this, you might find a security vulnerability lurking in
there, even if the person reporting it isn’t aware of the security implications.

I spend a lot of time drilling down into those kinds of reports and looking for something
that might be more serious than it appears at first glance.

3 of 4

The security officer

has an open-ended

charter to make

things secure.

https://www.freebsd.org/administration/
https://www.freebsd.org/security/charter/)
https://www.freebsd.org/security/
https://www.freebsd.org/security/
mailto:secteam@FreeBSD.org

53FreeBSD Journal • September/October 2022

Ed Maste: Mark also worked to bring the Syzkaller code-coverage-guided system call fuzz-
ing tool to FreeBSD, and worked with the project’s maintainers to have it run on a consistent
basis. Syzkaller performs automated kernel fuzzing in order to find inputs that lead to a ker-
nel crash or some inconsistency detected by instrumentation. Syzkaller’s reports may indi-
cate potential vulnerabilities, but in any case represent bugs to be fixed. Mark worked on in-
creasing Syzkaller’s code coverage, triaged its reports, and has fixed many issues as a result.

FreeBSD also has a stress testing suite, called “stress2”, which can find race conditions
or misbehaviour that occurs under high load. A number of kernel bugs have been fixed as
a result.

Ed Maste: Among the useful cases that Mark identifies out
of the general bug reports mailing lists, social media and
other channels are issues that people have reported that
they want fixed. Quite often they’re unaware of the poten-
tial security impact of that problem. We try to understand
and extend evaluation of the problem to include any poten-
tial security impact and act upon it as warranted.

Q: What’s next for the security team?
Ed Maste: There are both technical and operational im-
provements we’re looking at within the security team. We
currently have focused efforts to discover potential issues
via fuzzing and other tools. We intend to continue and in-
crease this effort, for example by extending Syzkaller to include additional system calls, in-
creasing code coverage.

This has been ongoing for some time, but we expect to increase our effort in revisiting
system defaults, and applying sandboxing, privilege reduction, and other user space tech-
niques to software in the base system and the ports collection.

Operationally, we are looking at improving coordination with downstream projects and
vendors who use FreeBSD as the basis for their own development. We also need to keep
working on bringing new members into the security team; this is a challenge shared by
many open source projects.

A prolific and versatile writer, PAM BAKER writes on many topics for leading tech and sci-
ence publications. She is also the author of many dead tree books, ebooks and white papers.
Her latest book is Decision Intelligence For Dummies which is about a new way to mine data
and use AI in decision making. It was released in February 2022. Baker lives in Atlanta, Geor-
gia where she’s currently working on her first sci-fi novel.

ANNE DICKISON joined the Foundation in 2015 and brings over 20 years experience in
technology-focused marketing and communications. Specifically, her work as the Marketing
Director and then Co-Executive Director of the USENIX Association helped instill her com-
mitment to spreading the word about the importance of free and open source technologies.

4 of 4

The security officer

has an open-ended

charter to make

things secure.

54FreeBSD Journal • September/October 2022

MCH2022 is a nonprofit, outdoor, hacker camp that took place in Zeewolde, the Nether-
lands, July 22 to 26, 2022. The event is organized by and for volunteers from the worldwide
hacker community. Knowledge sharing, technological advancement, experimentation, con-
necting with hacker peers, and hacking are some of the core values of this event. MCH2022
is the successor of a string of similar events that have taken place every four years since
1989. These are GHP, HEU, HIP, HAL, WTH, HAR, OHM and SHA. https://mch2022.org/

DAY 0 • 7-21-2022 Thursday

T oday is mostly about packing things and traveling up to
Zeewolde where MCH 2022 is about to begin. I arrived

in the afternoon and after checking in, I picked up my card-
board tent which will be my new home for the coming week.

I met most of the village “Frubar” which I will be part of.
I got my badge working, but after some updates (yes, Wi-Fi
was up in the late evening), the Python apps don’t want to run. Dinner was a pizza salami
which I bought at the food corner. After some drinks, it was time to go to bed.

DAY 1 • 7-22-2022 Friday

A coffee (thanks Frubar!) and a shower made me feel human again, after which I started
typing the first bits of this trip report. Today, the uplink for the Ethernet arrived, provid-

ing almost gigabit speeds.
I visited some of our “remote” village members who had their camper with them and

consequently were in the camper area. Today was the official first day, but I missed the
opening talk because we were busy setting up the UbaBot (admittedly, I mostly watched, as

it took quite some preparation to get it up and running).
This “bot” is an automated cocktail making machine,

from which you can select and enjoy various pre-pro-
grammed cocktails, given that you feed it the right ingredi-
ents, of course. You can find more about this machine on
the Internet.

Evening shows are planned after the talks and work-
shops, but today I stayed in the village tent and played a few

rounds of Uno with some fellow villagers.

A TRIP REPORT
BY RENÉ LADAN

1 of 3

May Contain Hackers 2022
 (MCH2022)

https://mch2022.org/

55FreeBSD Journal • September/October 2022

DAY 2 • 7-23-2022 Saturday

T oday I visited some talks and workshops: a talk by Karsten Nohl on hack-
ing 5G networks with OpenRAN, a KiCad workshop about design-

ing (but not actually making) PCBs, and a workshop on programming the
camp badge.

Things never go as planned, Karsten’s talk was somewhat during lunch
time and therefore overruled. At Frubar, lunch did not consist of a quick
sandwich. Some people in the village were quite enthusiastic about the
grill we brought, so we decided to have grilled steak for lunch this week.

Regarding the KiCad workshop, I found myself trying to set up the
Espressif IDE in a Ubuntu chroot under FreeBSD and getting communi-
cation with the badge up and running. The badge comes with some Python script for file ma-
nipulation, which did work in the end.

I arrived at the badge workshop in the DNA tent, which was already filled to the brim, but I
managed to find a seat and the fellow sitting next to me and I experimented with the badges
together.

The workshop was targeting the embedded Python that the badge runs. Their tutorial in-
cluded a program to draw random lines which turned out to run fine.

After the workshop, I wandered back to base. Later in the evening, I stumbled upon a perfor-
mance of the Ambrassband that the organization had scheduled. Live brass music on-stage.

DAY 3 • 7-24-2022 Sunday

I didn’t plan many talks or workshops for today, however, today was also Tor day. I attend-
ed the Tor talk by Alexander Færøy and the unofficial Tor relay operator meetup in the

evening.
After lunch, I went to the exhibition of the Home Computer Museum in the retro tent

and finally played Duckhunt after all these years. I also had a chat with a guy from the muse-
um about, well, old computers ;). Later that evening, some of us went to visit the party at the
silent disco, after saying hello to the folks at the Geraffel tent, who also had a small party.

DAY 4 • 7-25-2022 Monday

I attended some talks today: one about Tesla cars and the security of its keys/phone app by
Martin Herfurt, one about reporting vulnerabilities by the Dutch Institute for Vulnerability

Disclosure (we watched this on the big screen in the village tent), a talk about separate audio
without physical walls by Adrian Lara Moreno (also in the tent — the demo didn’t work out I
guess), and drscream’s talk about Illumos zones.

I also went to the Area 42 Workshops, which was mostly just a small tent set up as a class-
room to watch the talk about making a drone out of the camp badge (or how it failed).

I stayed at the village tent this evening (sorry Symphony of Fire show) and played some
more Uno.

2 of 3

56FreeBSD Journal • September/October 2022

DAY 5 • 7-26-2022 Tuesday

T oday is the last day of this event and apparently the time
when all camps start to pack up after breakfast. This is

also the day that my temporary home will be recycled by the
company that sells them to MCH, so I’d better pack up too.

I had some events scheduled, but those were overruled
because of saying goodbye to those in the Frubar group who
were also heading home.

One last thing: I need to have the sound selection switch of my badge replaced by one
with a knob to grab, as the old knob mysteriously broke off, perhaps during the workshop
on Saturday.

Back Home • 7-27-2022 Wednesday

I woke up in my apartment and realized there was no more steak for lunch :(
Back home, I restored the regular ‘rene’ user on my laptop and registered the badge on

my home Wi-Fi.
Some firmware and application updates came in (everything works again ;)), it now runs

OS version 1.4. Under FreeBSD, it shows up as:

ugen0.5: <Badge.team MCH2022 badge> at usbus0
umodem0 on uhub0
umodem0: <ESP32 console> on usbus0
umodem0: data interface 1, has no CM over data, has no break
umodem1 on uhub0
umodem1: <FPGA console> on usbus0
umodem1: data interface 3, has no CM over data, has no break

The RP2040, which connects the ESP32 to the USB port and knobs, is unlisted.
The next event will be held in 2025, but next year a sibling event will be held in Germany.
Almost all videos are available at https://media.ccc.de/b/conferences/camp-NL/mch2022/

RENÉ LADAN studied computing science at the Eindhoven University of Technology where
he graduated in 2006. He has worked at various companies, including the university itself. He
currently works as a software engineer at Carapax IT.

When not doing BSD stuff and still in nerd mode, he likes to tinker with his homebrew
time station receivers. Outside of technical things, René likes to hike, puzzle, and work in his
parents’ garden.

3 of 3

https://media.ccc.de/b/conferences/camp-NL/mch2022/

BSD Events taking place through February 2023
BY ANNE DICKISON

Please send details of any FreeBSD related events or events that are of interest for
FreeBSD users which are not listed here to freebsd-doc@FreeBSD.org.

FreeBSD Office Hours
https://wiki.freebsd.org/OfficeHours
Join members of the FreeBSD community for FreeBSD Office Hours. From general Q&A to
topic-based demos and tutorials, Office Hours is a great way to get answers to your FreeBSD-
related questions.

Past episodes can be found at the FreeBSD YouTube Channel.
https://www.youtube.com/c/FreeBSDProject.

57FreeBSD Journal • September/October 2022

November 2022 FreeBSD Vendor Summit
November 3-4, 2022
Virtual
https://wiki.freebsd.org/DevSummit/202211

Join us for the online November 2022 FreeBSD Vendor Summit. The event will consist of virtu-
al, half day sessions. In addition to vendor talks, we will have discussion sessions and a separate
hallway track. The vendor summit is sponsored by the FreeBSD Foundation.

FOSDEM 2023
February 4-5, 2023
Brussels, Belgium
https://fosdem.org/2023/

FOSDEM is a two-day event organized by volunteers to promote the widespread use of free
and open source software. The event offers open source and free software developers a place
to meet, share ideas and collaborate. Renowned for being highly developer-oriented, FOSDEM
brings together some 8000+ developers from all over the world.

mailto:freebsd-doc@FreeBSD.org
https://wiki.freebsd.org/OfficeHours
https://www.youtube.com/c/FreeBSDProject
https://www.youtube.com/c/FreeBSDProject
https://wiki.freebsd.org/DevSummit/202211
https://fosdem.org/2023/

